Protons and neutrons that's it
Answer:
Na⁺ tends to interact with the hardest base, which is water. Ag⁺ tends to interact with the softest (hardless) base, which is Cl⁻.
Explanation:
The HSAB concept says that hard acids are small ions with low electronegativity, while hard bases are electron donating groups with high electronegativity and low polarizability. The HSAB concept also says that hard acids will tend to react with hard bases. The opposite is valid for soft acids and soft bases.
Na⁺ is a hard acid
Ag ⁺ is a soft acid
Cl⁻ is a hard base
H₂O is a harder base than Cl⁻
Therefore, when in water, the Na⁺ tends to react with water, because it is a harder base than Cl⁻. However, as Ag⁺ is a soft acid, it will tend to stay with the less hard base, which is Cl⁻.
Answer:
4. +117,1 kJ/mol
Explanation:
ΔG of a reaction is:
ΔGr = ΔHr - TΔSr <em>(1)</em>
For the reaction:
2 HgO(s) → 2 Hg(l) + O₂(g)
ΔHr: 2ΔHf Hg(l) + ΔHf O₂(g) - 2ΔHf HgO(s)
As ΔHf of Hg(l) and ΔHf O₂(g) are 0:
ΔHr: - 2ΔHf HgO(s) = <u><em>181,66 kJ/mol</em></u>
<u><em /></u>
In the same way ΔSr is:
ΔSr= 2ΔS° Hg(l) + ΔS° O₂(g) - 2ΔS° HgO(s)
ΔSr= 2* 76,02J/Kmol + 205,14 J/Kmol - 2*70,19 J/Kmol
ΔSr= 216,8 J/Kmol = <em><u>0,216 kJ/Kmol</u></em>
Thus, ΔGr at 298K is:
ΔGr = 181,66 kJ/mol - 298K*0,216kJ/Kmol
ΔGr = +117,3 kJ/mol ≈ <em>4. +117,1 kJ/mol</em>
<em></em>
I hope it helps!
The quantity of heat required to vapourize 1 mole of a substance depends on the kind of intermolecular forces between the molecules of the substance. Diethyl ether molecules are held together by weak dispersion forces compared to the stronger hydrogen bonding in ethanol. Therefore, 1 mole of diethyl ether requires less heat to vapourize than is required to vapourize 1 mole of ethanol.
Intermolecular forces hold the molecules a substance together in a given state of matter. The properties of a substance such as boiling point, melting point etc are dependent on the nature of intermolecular forces holding the molecules of the substance.
Diethyl ether molecules are held together by weak dispersion forces while molecules of ethanol are held together by hydrogen bonds.
Since hydrogen bonds are much stronger than dispersion forces, a greater quantity of heat is required to break the intermolecular hydrogen bonds in ethanol in order to vapourize them than is required to vapourize diethyl ether.
Therefore, owing to stronger intermolecular forces between molecules of ethanol, less heat is required to vapourize than is required to vapourize 1 mole of ethanol.
Learn more: brainly.com/question/9328418