10 moles of H2 reacts with 5 moles of O2 creating 10 moles of water.
Water has the molar mass 18 g/mole
10 · 18g = 180 g
180 g of water can be produced from 10 moles of hydrogen gas.
Explanation:
The pressure exerted by vapors or gas on the surface of a liquid is known as vapor pressure.
This means that weaker is the intermolecular forces present in a substance more easily it can form vapors. As a result, it will have high vapor pressure.
As substance B has high vapor pressure which means that it has weak intermolecular forces.
Also, stronger is the intermolecular forces present in a substance more will be its boiling point. Hence, more energy or temperature is required to break the bonds. Hence, substance A has higher boiling point and high heat of vaporization.
When surrounding pressure is less than or equal to its vapor pressure then substance B boils into the gas phase. Hence, substance B will be a gas at 300 mm Hg.
Therefore, we can conclude that characteristics of the two substances will be as follows.
(a) Substance B - has weaker intermoclcular
(b) Substance A - has a higher boiling point
(c) Substance B - is a gas at 300 mm Hg
(d) Substance A - has a higher heat of vaporization
Answer:
1.99V
Explanation:
Balanced redox reaction equation:
3CU2+(aq) + 2Al(s) ------> 3Cu(s) + 2Al3+(aq)
E°cell= E°cathode- E°anode
E°cell= 0.34-(-1.66)
E°cell= 2.0V
From Nernst equation:
E= E°cell - 0.0592/n logQ
E= 2.0 - 0.0592/6 log [3.43]/[1.63]
E= 2.0- 0.0032
E= 1.99V