Answer:
4 x 12 +9 x 1= 56
Explanation:
I do not know what the 114.17 g/mol comes from
Answer:
None of the options are correct.
Explanation:
1) when the temperature of the solution is increased the solubility of the gas in the liquid decreases , hence option 1 is incorrect.
2)The heat released by the dissolution of an ionic compound in water is heat of hydration of the compound and is independent of the initial temperature of the solution.
3) The solubility of a liquid in water is not affected significantly by the pressure changes in the system as gases only have a significant cahne in solubility with change in pressure.
Answer:- Formula of the hydrate is
and it's name is Iron(III)sulfate pentahydrate.
Solution:- As per the given information, there is 18.4% water in the hydrate. If we assume the mass of the hydrate as 100 grams then there would be 18.4 grams of water and 81.6 grams of Iron(III)sulfate present in the hydrate.
Molar mass for Iron(III)sulfate is 399.88 gram per mol and the molar mass for water is 18.02 gram per mol.
We will calculate the moles of Iron(III)sulfate and water present in the compound on dividing their grams by their molar masses as:

= 

= 
Now, the next step is to calculate the mol ratio and for this we divide the moles of each by the least one of them means whose moles are less. Here, the moles of Iron(III)sulfate are less than moles of water. So, we divide the moles of each by 0.204.
= 1
= 5
There is 1:5 mol ratio between Iron(III)sulfate and water. So, the formula of the hydrate is
and the name of the hydrate is Iron(III)sulfate pentahydrate.
Answer:
She could prove that it is a combination of substances by looking for a change in color, or the formation of bubbles. She could also try to pull the combination apart by physical means alone.
Explanation: