Answer:
The number of protons also determines the identity of the element. ... Since the atom is electrically neutral, the number of electrons must equal the number of protons.
First we calculate the number
of moles of Cl2, that is:
moles Cl2 = 1.5*10^10
grams/71 grams/mol = 211267605.633802817 mol = 2.1 * 10 ^ 8 mole = x <span>
So that based on stoichiometry, the number of moles of NaOH =
2x and that of H2 = x mol
mass of NaOH = 4.2*10^8 * 40 =168*10^8 grams = 1.68 * 10^6 kg
= 1.68 metric tons
<span>mass of H2 = 2.1*10^8 * 2 = 4.2*10^8 grams = 0.042 * 10^6 kg
= 0.042 metric tons.</span></span>
As you go across a period, radius shrinks because you are adding protons. The added positive charge increases pull on the electron shells.
As you go down a group, radius gets larger because you are increasing shells of electrons. This increases shielding of the nucleus' positive charge, so the electrons are not pulled in as much.
Answer:
Protons carry a positive electrical charge and they alone determine the charge of the nucleus. Adding or removing protons from the nucleus changes the charge of the nucleus and changes that atom's atomic number. For example, adding a proton to the nucleus of an atom of hydrogen creates an atom of helium.
i hope this helps!
We will use this formula for first order:
㏑[A] = - Kt +Ao
when we have t (given)= 30 min = 30 x 60 = 1800 s (we here convert time from min to second.
then we assume that the initial concentration Ao = 1
and the concentration of A (final concentration = 0.25
So by substitution:
㏑(0.25) = - K * 1800 + ㏑(1)
1.39 = K * 1800
∴ K = 0.00077 s^-1 or 7.7 x 10^-4