It is equal to 0.8 five star please?
It seems that some the work is already here, but I'd be glad to!! So for #3 which is 9x^2+15x, we can factor out both a 3 and an x (3x) so we know that 3x * 3x =9x^2 and 3x * 5 = 15x so once we take the 3x out of the equation, we are left with 3x(3x+5) and that's as far as you can factor.
For #4, we see that the common factor is 10m because 10m * 2n = 20mn and 10m * 3 = 30m so once we take 10m out of the original, it becomes 10m(2n-3)
For #5, this one the common factor is 4xy because 4xy * 2xy=8x^2y^2 and 4xy*x= 4x^2y and 4xy*3=12xy so once we take the 4xy out of the equation, it becomes 4xy(2xy-x-3)
Hope this helps!
Answer:
3x + 11
Step-by-step explanation:
Remember BPEMDAS.
"Three times a number" is saying multiply 3 times a variable; in this case, <em>x</em>. So we have 3x
"The sun of 3x and 11" is saying add our 3x and 11, so: 3x + 11
1) We calculate the volume of a metal bar (without the hole).
volume=area of hexagon x length
area of hexagon=(3√3 Side²)/2=(3√3(60 cm)²) / 2=9353.07 cm²
9353.07 cm²=9353.07 cm²(1 m² / 10000 cm²)=0.935 m²
Volume=(0.935 m²)(2 m)=1.871 m³
2) we calculate the volume of the parallelepiped
Volume of a parallelepiped= area of the section x length
area of the section=side²=(40 cm)²=1600 cm²
1600 cm²=(1600 cm²)(1 m² / 10000 cm²=0.16 m²
Volume of a parallelepiped=(0.16 m²)(2 m)=0.32 m³
3) we calculate the volume of a metal hollow bar:
volume of a metal hollow bar=volume of a metal bar - volume of a parallelepiped
Volume of a metal hollow bar=1.871 m³ - 0.32 m³=1.551 m³
4) we calculate the mass of the metal bar
density=mass/ volume ⇒ mass=density *volume
Data:
density=8.10³ kg/m³
volume=1.551 m³
mass=(8x10³ Kg/m³ )12. * (1.551 m³)=12.408x10³ Kg
answer: The mas of the metal bar is 12.408x10³ kg or 12408 kg
F(x)=4+6+5/4+1
F(x)=4+6+5/5
F(x)=10+1=11
Answer =11