Answer:
Increasing the surface area of the reactants
Explanation:
An increase in surface area of the reactant will always cause an increase in the rate of reaction. This is so because, an increase in the surface area of the reactant will cause the reactant particles to collide effectively thereby bringing about an increase in the reaction rate.
Collision theory suggests that for a reaction to occur, the reactant particles must collide with the right orientation. As the surface area of the reactants are increased, the reactants particles collide more with the right orientation bringing about definite increase in the rate of reaction.
Answer:
1.2029 J/g.°C
Explanation:
Given data:
Specific heat capacity of titanium = 0.523 J/g.°C
Specific heat capacity of 2.3 gram of titanium = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
1 g of titanium have 0.523 J/g.°C specific heat capacity
2.3 × 0.523 J/g.°C
1.2029 J/g.°C
According to Kepler's second law of orbital motion, a plane's orbital speed changes , depending on how far it is from the sun. The closer a planet is to the sun, the stronger the sun's gravitational pull on it, and the faster the planet moves. The farther away from the sun, the weaker the sun's gravitational pull and the slower it moves in its orbit.
The orbit of a planet around the sun is not a perfect circle, but an ellipse - a flattened circle.
Answer:
Explanation:
0
All the charges of the protons are cancelled out by all the charges on the electrons.