Butter won't melt in a fridge because of intermolecular tensions. While the bonds inside of the fat molecules are unbroken, the attractions between the fat molecules are weaker.
What intermolecular forces are present in butter?
The intermolecular forces known as London dispersion forces are the weakest and are most prominent in hydrocarbons. Due to the fact that butter molecules are hydrocarbons, London dispersion forces do exist between them.
How do intermolecular forces affect melting?
More energy is required to stop the attraction between these molecules as the intermolecular forces become more powerful. Because of this, rising intermolecular forces are accompanied with rising melting points.
Which forces are intramolecular and which are intermolecular?
Intramolecular forces are those that hold atoms together within molecules. The forces that hold molecules together are known as intermolecular forces.
Learn more about intermolecular forces: brainly.com/question/9328418
#SPJ4
Answer:
0.0400M of KI
Explanation:
Molarity is an unit of concentration defined as the ratio between moles of solute and liters of solution.
When you add 10.0 mL of 0.10M KI and 15.0mL, total volume is:
25.0mL = <em>0.025L of solution</em>
<em />
And moles of KI are:
0.0100L × 0.10M = <em>0.00100 moles of KI</em>
<em />
Thus, molarity is:
0.00100 moles / 0.025L = <em>0.0400M of KI</em>
The correct answer is<span> C) Water takes long to heat and cool down than other liquids.
It doesn't climb up the sides of a tube any more than other solutions do, and being a universal solvent has nothing to do with radiators. It does however take a long time to heat and cool down since you don't have a 100+ celsius burner to heat it up in an instant.</span>
Answer:
Reducing sugars are sugars where the anomeric carbon has an OH group attached that can reduce other compounds. Non-reducing sugars do not have an OH group attached to the anomeric carbon so they cannot reduce other compounds. ... Maltose and lactose are reducing sugars, while sucrose is a non-reducing sugar
The answer is C. Elastic potential energy