1. 100 C
2. Point B to C is the ices heat capacity
3. During the points D to E the bonds of the water molecules build up enough kinetic energy to break their intermolecular bonds (not intra), which can lead to gas.
4. Between points D and E the energy is being released the energy required is equivalent along the line.
5. Between point E and D the water is converting to water (condensation)
6. Energy is being released 2260 j/g
7. Yes, but only under extreme volumetric pressures
8. D and E or B and C
9. Freezing (the water is also becoming less dense)
10. Melting or if water already, absorbtion of energy
11. released.
This compound is also known as Barium Carbonate. 1 mole is equal to 1 moles BaCO3, or 197.3359<span> grams.</span>
Answer:
The rate decreases
Explanation:
When we dissolve a gas in a water, the process is exothermic. This implies that heat is evolved upon dissolution of a gas in water.
Recall from Le Chateliers principle that for exothermic reactions, an increase in temperature favours the reverse reaction. The implication of these is that when the temperature of the gas is increased, less gas will dissolve in water.
Hence increase in temperature decreases the rate of solubility of a gas in water.
The answer is- The energy of 1 L water at temperature 347.78 °C have more energy as 1 L of water at temperature 65°C.
Heat is a type of energy that causes a person's body to feel hot or cold.
While the temperature of an object is a parameter that indicates how hot or cold the object is.
How is the temperature in degree Fahrenheit converted to degree celsius?
- To convert the temperature in Fahrenheit to Celsius, subtract 32 and multiply by 5/9.
°
- Now, heat is a form of energy that flows from hotter object to colder object and temperature indicates whether the object is hot or cold by measuring its average kinetic energy.
- Now, the given temperature of 1 L water is 658 °F. This temperature in degree celsius is calculated as-
°C
- Now, higher the temperature, higher is the energy of water. Thus, the energy of 1 L water at 347.78 °C have more energy as 1 L of water at 65°C.
To learn more about heat and temperature, visit:
brainly.com/question/20038450
#SPJ4