Answer:
Only
gives spontaneous reaction.
Explanation:
A redox reaction will be spontaneous if standard reduction potential (
) of the reaction is positive. Because it leads to negative standard gibbs free energy change (
), which is a thermodynamic condition for spontaneity of a reaction.

Where
and
represents standard reduction potential of reduction half cell and standard reduction potential of oxidation half cell.
(1) Oxidation:
; 
Reduction:
; 
So, 
Hence this pair will give spontaneous reaction.
(2) Similarly as above, 
Hence this pair will give non-spontaneous reaction.
(3) Similarly as above, 
Hence this pair will give non-spontaneous reaction.
(4) Similarly as above, 
Hence this pair will give non-spontaneous reaction.
Answer:
Explanation:
412 ATP's will be generated from the complete metabolic oxidation of tripalmitin (tripalmitoylglycerol)
130 ATP from the oxidation of palmitate
22 ATP from the oxidation of glycerol
Altogether 130 + 22 = 412 ATP will be produced.
Here in case of tripalmitin (tripalmitoylglycerol), we have 51 carbons.
When 51 carbons can produce 412 ATPs
Then 1 carbon will produce how many ATPs = 412 ATPs/ 51 carbon= 8.1 ATPs.
This shows that ATP yield per carbon often oxidized will be 8.1 ATPs
Now we will see the ATP yield in the case of glucose.
Glucose is made up of 6 carbon and complete oxidation of glucose will produce 38 ATPs
When 6 carbons can yield 38 ATPs
Then 1 carbon can yield how many ATPs= 38 ATPs/ 6 carbons= 6.33 ATPs.
So, ATP yield per carbon in case of glucose will be 6.33 ATPs
Answer:
the input force would be 75 N
Explanation:
if the output force is 150 N you divide that in half which leaves with 75 N !! :)
Balance Chemical Equation for combustion of Propane is as follow,
C₃H₈ + 5 O₂ → 3 CO₂ + 4 H₂O
According to equation,
1 mole of C₃H₈ on combustion gives = 4 moles of H₂O
So,
5 moles of C₃H₈ on combustion will give = X moles of H₂O
Solving for X,
X = (5 mol × 4 mol) ÷ 1 mole
X = 20 moles of H₂O
Calculating number of molecules for 20 moles of H₂O,
As,
1 mole of H₂O contains = 6.022 × 10²³ molecules
So,
20 moles of H₂O will contain = X molecules
Solving for X,
X = (20 mole × 6.022 × 10²³ molecules) ÷ 1 mol
X = 1.20 ×10²⁵ Molecules of H₂O
The answer is D, reactant.