Answer:
Nuclear Chain Reactions. A chain reaction refers to a process in which neutrons released in fission produce an additional fission in at least one further nucleus. This nucleus in turn produces neutrons, and the process repeats. The process may be controlled (nuclear power) or uncontrolled (nuclear weapons).
Explanation:
Answer: D) helium.
Explanation:
Nuclear fission is a process which involves the conversion of a heavier nuclei into two or more small and stable nuclei along with the release of energy.

Nuclear fusion is a process which involves the conversion of two small nuclei to form a heavy nuclei along with release of energy.
Example: 
Thus when deuterium and tritium , the two isotopes of hydrogen are fused, a heavier nuclei helium is being formed from two smaller nuclei releasing a neutron.
The results of Dominic and Eva's experiment is unreliable and can lead to a pseudoscientific claim primarily because they did not repeat their tests multiple times. Although, they used the same type of stopwatch in recording the time it takes for the chemical reaction to occur, they have different reactions times. Thus, it would have been better if they conducted several trials then obtained the average of their results.
The balanced equation is attached in the image below. The coefficients are 2, 2, blank.
Answer:
(c) The retention time would be higher (d) The retention time would be lower.
Explanation:
For the polar solutes which were separated using the hydrophilic interaction chromatography (HILIC) with a strongly polar bonded phase, the retention time would be higher if eluent were changed from 80 vol% to 90 vol% acetonitrile in water.
However, for the polar solutes which were separated using the normal-phase chromatography on bare silica with methyl t=butyl ether and 2-propanol solvent, the retention time would be lower if the eluent were changed from 40 vol% to 60 vol% 2-propanol.