<span>The volume of iron is obtained from the density formula (density= mass/ volume) given the density and mass. In this case, 4,540 grams of iron and a density of 7.86 g/ml are given. The volume obtained from formula is 493.64 ml or 5.78 dL. </span>
It means that <span>the cell loses most of its water from osmosis when put in a hypertonic.
Hope that helps!</span>
Answer:
m = 50.74 kg
Explanation:
We have,
Initial temperature of water is 20 degrees Celsius
Final temperature of water is 46.6 degrees Celsius
Heat absorbed is 5650 J
It is required to find the mass of the sample. The heat absorbed is given by the formula ad follows :

c is specific heat of water, c = 4.186 J/g°C
So,

So, the mass of the sample is 50.74 kg.
Answer:
answer is option a..............
<u>Answer:</u> The reaction order with respect to A is 'm'
<u>Explanation:</u>
Order of the reaction is the sum of the concentration of terms on which the rate of the reaction actually depends. It is equal to the sum of the exponents of the molar concentration in the rate law expression.
Elementary reactions the reactions for which the order of the reaction is same as its molecularity and order with respect to each reactant is equal to its stoichiometric coefficient as represented in the balanced chemical equation.
The given chemical equation follows:

The rate of the above reaction is given to us as:
![Rate=k[A]^m[B]^n](https://tex.z-dn.net/?f=Rate%3Dk%5BA%5D%5Em%5BB%5D%5En)
In the above rate law expression, the order with respect to the reactants is not equal to the stoichiometric coefficients. Thus, it is not an elementary reaction.
Order with respect to reactant A = m
Order with respect to reactant B = n
Hence, the reaction order with respect to A is 'm'