Answer:
45 ways
Step-by-step explanation:
We are given;
there are 3 different math courses, 3 different science courses, and 5 different history courses.
Thus;
Number ways to take math course = 3
The number of ways to take science course = 3
The number of ways to take history course = 5
Now, if a student must take one of each course, the different ways it can be done is;
possible ways = 3 x 3 x 5 = 45 ways.
Thus, number of different ways in which a student must take one of each subject is 45 ways.
Step-by-step explanation:

We have a + b = 180 and a = 12 + b;
Then, 12 + b + b = 180;
12 + 2b = 180;
2b = 168;
b = 84;
a = 12 + 84;
a = 96;
Answer:
<h2><em><u>62</u></em><em><u>.</u></em><em><u>2</u></em></h2>
Step-by-step explanation:
4n × 2 + 43
<em>[</em><em>By</em><em> </em><em>putting</em><em> </em><em>the</em><em> </em><em>value</em><em> </em><em>of</em><em> </em><em>n</em><em> </em><em>=</em><em> </em><em>2</em><em>.</em><em>4</em><em>]</em>
= (4 ×2.4) × 2 + 43
= 9.6 × 2 + 43
= 19.2 + 43
= <em><u>62.2 (Ans)</u></em>