To start, you know that this question is asking for the surface area of one of the cylinders, and the formula to finding the surface area of a cylinder is A=2πrh+2<span>πr^2.
Now, to find the surface area, you first need to figure out the height of the plastic cylinder and its radius.
Since you know that the diameter (twice the radius) of the cylinder is equivalent to 4 marbles, and each marble has a diameter of 2 cm, the diameter of the cylinder would be 8 cm. Then, to find its radius, you divide by 2, so its radius is 4.
Now, since you know that the height of the cylinder is 10 marbles, you multiply 10 by 2 to get that the height is 20 cm tall.
Since you now have the values of the height and the radius, plug the values into the surface area of a cylinder formula (r is radius and h is height).
</span>A=2π(4)(20)+2π(4)^2.
<span>Assuming that pi is 3.14, when you simplify this using PEMDAS, you get
502.4+100.48 which then simplifies to 602.88, the area of the plastic to make one cylinder.
</span>
This problem can be solved from first principles, case by case. However, it can be solved systematically using the hypergeometric distribution, based on the characteristics of the problem:
- known number of defective and non-defective items.
- no replacement
- known number of items selected.
Let
a=number of defective items selected
A=total number of defective items
b=number of non-defective items selected
B=total number of non-defective items
Then
P(a,b)=C(A,a)C(B,b)/C(A+B,a+b)
where
C(n,r)=combination of r items selected from n,
A+B=total number of items
a+b=number of items selected
Given:
A=2
B=3
a+b=3
PMF:
P(0,3)=C(2,0)C(3,3)/C(5,3)=1*1/10=1/10
P(1,2)=C(2,1)C(3,2)/C(5,3)=2*3/10=6/10
P(2,0)=C(2,2)C(3,1)/C(5,3)=1*3/10=3/10
Check: (1+6+3)/10=1 ok
note: there are only two defectives, so the possible values of x are {0,1,2}
Therefore the
PMF:
{(0, 0.1),(1, 0.6),(2, 0.3)}
(C) -26 because you have use PEMDAS
Answer: there isn’t a graph shown
Step-by-step explanation: