Answer:
a) 5 N b) 225 N c) 5 N
Explanation:
a) Per Coulomb's Law the repulsive force between 2 equal sign charges, is directly proportional to the product of the charges, and inversely proportional to the square of the distance between them, acting along the line that joins the charges, as follows:
F₁₂ = K Q₁ Q₂ / r₁₂²
So, if we make Q1 = Q1/5, the net effect will be to reduce the force in the same factor, i.e. F₁₂ = 25 N / 5 = 5 N
b) If we reduce the distance, from r, to r/3, as the factor is squared, the net effect will be to increase the force in a factor equal to 3² = 9.
So, we will have F₁₂ = 9. 25 N = 225 N
c) If we make Q2 = 5Q2, the force would be increased 5 times, but if at the same , we increase the distance 5 times, as the factor is squared, the net factor will be 5/25 = 1/5, so we will have:
F₁₂ = 25 N .1/5 = 5 N
The answer is 9.8 ms^-2, because there is only one force acting on the object so the acceleration will be numerically equal to the gravitational field strength.
<span>122.0 km/hr. First let’s make sure all of our units are in the base meter form: i.e. convert 5km to 5000m. (We will convert back to km later). The first thing to do is look at the equation relating velocity, acceleration, and distance: Vf^2 = Vi^2 + 2*a*d, where Vf is final velocity, Vi is initial velocity, a is acceleration, and d is distance. 25^2 = 10^2 + 2*a*5000 =?> 625 = 100 +10000a => a= 0.0525m/s^2. Now that we have acceleration, we can use the same equation again with different numbers.: Vf^2 = Vi^2 + 2*a*d = 25^2 + 2*0. 0525m*5000 = 625 + 525 =1150 => Vf^2 = 1150 => 33.9m/s. Convert to km/hour: 33.9m/s * 1km/1000m *60s/1min * 60min/ 1 hr = 122.0 km/hr.</span>