Well, since you only want direction, ignore the numbers. Use the right hand rule.
Current (pointer finger) points west (left).
Magnetic field (middle finger) points south (towards you).
Force (thumb) then points up (away from the earth)
Answer:
The necessary separation between the two parallel plates is 0.104 mm
Explanation:
Given;
length of each side of the square plate, L = 6.5 cm = 0.065 m
charge on each plate, Q = 12.5 nC
potential difference across the plates, V = 34.8 V
Potential difference across parallel plates is given as;

Where;
d is the separation or distance between the two parallel plates;

Therefore, the necessary separation between the two parallel plates is 0.104 mm
Answer:
75.71 m/s
Explanation:
From equation of motion, acceleration is given by
where v is the final velocity, u is the initial velocity and t is time taken.
Making v the subject of the above formula
v=at+u
Substituting 6.7 s for time, t and 11.3 for a and taking u as zero since it starts from rest
v=11.3*6.7=75.71 m/s
Answer:
Explanation:
The equation for this, since we are talking about weight on an elevator, is Newton's 2nd Law adjusted to fit our needs:
where the Normal Force needed to lift that elevator car is the tension. So the equation then becomes
T = ma + w where T is the tension in the cable to lift the elevator, m is the mass of the elevator (which we have to solve for), a is the acceleration of the elevator (positive since it's going up), and w is the weight of the elevator (which we have as 5500 N). Solving first for mass:
w = mg and
5500 =- m(10) so
m = 550 kg. Now we have what we need to solve for the tension:
T = 550(4.0) + 5500 and
T = 2200 + 5500 so
T = 7700 N
Part A:
( 5,000 : 100 ) * 6 = 300 lit.
300 lit. * 1.066 Euros/ lit. = 318.9 Euros
1 Euro = 1.20 USD
318.9 * 1.20 = 382.68 USD
Part B :
6 lit./100 km = 0.06 lit/1 km
1 gal = 3.7853 lit.
1 mile = 1.609344 km
0.06 : 3.7853 = 0.01585
... = 0.01585 gal / 1 km / * 1.609344
= 0.0255 gal/mile