During upward projection the final velocity is zero, and the gravitational acceleration is -10 m/s² (against the gravity).
Therefore; using the equation;
S = 1/2gt² + ut
Where s is the height h, g is gravitational acceleration, and t is the time and u is the initial velocity u, is 16 ft/s.
Thus; h= 1/2(-10)t² + 16t
We get; h = -5t² + 16t
Therefore; the quadratic equation is 5t² - 16t + h =0
<span>The moon is smaller and more dense than the Earth, and has less extreme temperature changes. The statement presented is True. In terms of temperature, since there is no atmosphere on the moon, then it has less extreme temperature changes. The moon can reach 253 Fahrenheit in the day and -387 Fahrenheit at night.</span>
Answer:
the answer is b temperature
Answer:
The magnitude of angular acceleration is .
Explanation:
Given that,
Initial angular velocity,
When it switched off, it comes o rest,
Number of revolution,
We need to find the magnitude of angular acceleration. It can be calculated using third equation of rotational kinematics as :
So, the magnitude of angular acceleration is . Hence, this is the required solution.
Answer:
20m/s²
Explanation:
force = mass*acceleration
acceleration = force ÷ mass
acceleration = 200N ÷ 10kg
acceleration = 20m/s²