Answer:
The objective lens is an optical tool used to focus an image.
Explanation:
The objective lens is an optical tool that collects light emitted by an object under observation and focuses the rays of light in order to form a real and magnified image They are used in optical instruments like microscopes, cameras, telescopes, etc. and are also referred as objective or object glasses.
I think it is this because compression stroke it needs to be compressed then open up when started.
Answer:
Pressure is equal to the ratio of thrust to the area in contact. Upthrust is a force exerted by the fluids on an object placed in the fluid . Upthrust acts in upward direction.
Answer:
the spring constant k = 
the value for the damping constant 
Explanation:
From Hooke's Law

Thus; the spring constant k = 
The amplitude is decreasing 37% during one period of the motion


Therefore; the value for the damping constant 
Explanation:
Show that the motion of a mass attached to the end of a spring is SHM
Consider a mass "m" attached to the end of an elastic spring. The other end of the spring is fixed
at the a firm support as shown in figure "a". The whole system is placed on a smooth horizontal surface.
If we displace the mass 'm' from its mean position 'O' to point "a" by applying an external force, it is displaced by '+x' to its right, there will be elastic restring force on the mass equal to F in the left side which is applied by the spring.
According to "Hook's Law
F = - Kx ---- (1)
Negative sign indicates that the elastic restoring force is opposite to the displacement.
Where K= Spring Constant
If we release mass 'm' at point 'a', it moves forward to ' O'. At point ' O' it will not stop but moves forward towards point "b" due to inertia and covers the same displacement -x. At point 'b' once again elastic restoring force 'F' acts upon it but now in the right side. In this way it continues its motion
from a to b and then b to a.
According to Newton's 2nd law of motion, force 'F' produces acceleration 'a' in the body which is given by
F = ma ---- (2)
Comparing equation (1) & (2)
ma = -kx
Here k/m is constant term, therefore ,
a = - (Constant)x
or
a a -x
This relation indicates that the acceleration of body attached to the end elastic spring is directly proportional to its displacement. Therefore its motion is Simple Harmonic Motion.