Answer:
3d + 1
I'm pretty sure it's the same thing.
Each large box weighs 15 kilograms and each small box weighs 13.5 kilograms.
Step-by-step explanation:
Let,
Weight of large box = x
Weight of small box = y
According to given statement;
5x+2y=102 Eqn 1
3x+8y=153 Eqn 2
Multiyplying Eqn 1 by 4

Subtracting Eqn 2 from Eqn 3

Dividing both sides by 17

Putting x=15 in Eqn 2

Dividing both sides by 8

Each large box weighs 15 kilograms and each small box weighs 13.5 kilograms.
Keywords: linear equation, elimination method
Learn more about elimination method at:
#LearnwithBrainly
JK= 8, because x+3= 2x-5= 19
Answer:
The population of the city in 2002 is 469,280 while the population of the suburb is 730,720.
Step-by-step explanation:
- 6% of the city's population moves to the suburbs (and 94% stays in the city).
- 2% of the suburban population moves to the city (and 98% remains in the suburbs).
The migration matrix is given as:
![A= \left \begin{array}{cc} \\ C \\S \end{array} \right\left[ \begin{array}{cc} C&S\\ 0.94&0.06 \\0.02&0.98 \end{array} \right]](https://tex.z-dn.net/?f=A%3D%20%5Cleft%20%5Cbegin%7Barray%7D%7Bcc%7D%20%20%5C%5C%20C%20%5C%5CS%20%5Cend%7Barray%7D%20%5Cright%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%20%20C%26S%5C%5C%200.94%260.06%20%5C%5C0.02%260.98%20%5Cend%7Barray%7D%20%5Cright%5D)
The population in the year 2000 (initial state) is given as:
![\left[ \begin{array}{cc} C&S\\ 500,000&700,000 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%20%20C%26S%5C%5C%20500%2C000%26700%2C000%20%20%5Cend%7Barray%7D%20%5Cright%5D)
Therefore, the population of the city and the suburb in 2002 (two years after) is:
![S_0A^2=\left \begin{array}{cc} [500,000&700,000]\\& \end{array} \right\left \begin{array}{cc} \end{array} \right\left[ \begin{array}{cc} 0.94&0.06 \\0.02&0.98 \end{array} \right]^2](https://tex.z-dn.net/?f=S_0A%5E2%3D%5Cleft%20%5Cbegin%7Barray%7D%7Bcc%7D%20%5B500%2C000%26700%2C000%5D%5C%5C%26%20%20%5Cend%7Barray%7D%20%5Cright%5Cleft%20%5Cbegin%7Barray%7D%7Bcc%7D%20%5Cend%7Barray%7D%20%5Cright%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%200.94%260.06%20%5C%5C0.02%260.98%20%5Cend%7Barray%7D%20%5Cright%5D%5E2)
![A^{2} = \left[ \begin{array}{cc} 0.8848 & 0.1152 \\\\ 0.0384 & 0.9616 \end{array} \right]](https://tex.z-dn.net/?f=A%5E%7B2%7D%20%3D%20%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%200.8848%20%26%200.1152%20%5C%5C%5C%5C%200.0384%20%26%200.9616%20%5Cend%7Barray%7D%20%5Cright%5D)
Therefore:
![S_0A^2=\left \begin{array}{cc} [500,000&700,000]\\& \end{array} \right\left \begin{array}{cc} \end{array} \right \left[ \begin{array}{cc} 0.8848 & 0.1152 \\ 0.0384 & 0.9616 \end{array} \right]\\\\=\left[ \begin{array}{cc} 500,000*0.8848+700,000*0.0384& 500,000*0.1152 +700,000*0.9616 \end{array} \right]\\\\=\left[ \begin{array}{cc} 469280& 730720 \end{array} \right]](https://tex.z-dn.net/?f=S_0A%5E2%3D%5Cleft%20%5Cbegin%7Barray%7D%7Bcc%7D%20%5B500%2C000%26700%2C000%5D%5C%5C%26%20%20%5Cend%7Barray%7D%20%5Cright%5Cleft%20%5Cbegin%7Barray%7D%7Bcc%7D%20%5Cend%7Barray%7D%20%5Cright%20%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%200.8848%20%26%200.1152%20%5C%5C%200.0384%20%26%200.9616%20%5Cend%7Barray%7D%20%5Cright%5D%5C%5C%5C%5C%3D%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%20500%2C000%2A0.8848%2B700%2C000%2A0.0384%26%20500%2C000%2A0.1152%20%2B700%2C000%2A0.9616%20%5Cend%7Barray%7D%20%5Cright%5D%5C%5C%5C%5C%3D%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%20469280%26%20730720%20%5Cend%7Barray%7D%20%5Cright%5D)
Therefore, the population of the city in 2002 is 469,280 while the population of the suburb is 730,720.
<span> An </span>equation<span> is a mathematical statement that shows the equal value of two expressions while an </span>inequality is a mathematical statement that shows that an expression is lesser than or more than the other. "<span>An 18-wheel truck stops at a weigh station before passing over a bridge. The weight limit on the bridge is 65,000 pounds. The cab (front) of the truck weighs 20,000 pounds, and the trailer (back) of the truck weighs 12,000 pounds when empty. In pounds, how much cargo can the truck carry and still be allowed to cross the bridge?" does this help?</span>