Answer:
(a <em><u>s</u></em><em><u>q</u></em><em><u>u</u></em><em><u>a</u></em><em><u>r</u></em><em><u>e</u></em><em><u> </u></em><em><u>+</u></em><em><u>7</u></em><em><u>a</u></em><em><u>+</u></em><em><u>1</u></em><em><u>2</u></em><em><u>)</u></em><em><u> </u></em><em><u>÷</u></em><em><u>(</u></em><em><u>a</u></em><em><u>+</u></em><em><u>3</u></em><em><u>)</u></em>
The third term of the expansion is 6a^2b^2
<h3>How to determine the third term of the
expansion?</h3>
The binomial term is given as
(a - b)^4
The r-th term of the expansion is calculated using
r-th term = C(n, r - 1) * x^(n - r + 1) * y^(r - 1)
So, we have
3rd term = C(4, 3 - 1) * (a)^(4 - 3 + 1) * (-b)^(3-1)
Evaluate the sum and the difference
3rd term = C(4, 2) * (a)^2 * (-b)^2
Evaluate the exponents
3rd term = C(4, 2) * a^2b^2
Evaluate the combination expression
3rd term = 6 * a^2b^2
Evaluate the product
3rd term = 6a^2b^2
Hence, the third term of the expansion is 6a^2b^2
Read more about binomial expansion at
brainly.com/question/13602562
#SPJ1
Answer:
n=-6
Step-by-step explanation:
-3n-4n-17=25
-7n-17=25
-7n=42
n=-6
H = 2f / (m+1)
[multiply by (m+1)]
h(m+1) = 2f
[divide by 2]
f = (h (m + 1)) / 2
3b / (b+2) = 12 / (b+2)
[multiply by (b+2)]
3b = 12
[divide by 3]
b = 4
3 / (6x + 1) / 2 = 8 / (x + 4) / 3
[multiply both denominators to mike one denominator]
3 / 8(6x+1) = 8 / 3(x+4)
[expand brackets]
3 / (48x + 8) = 8 / (3x + 12)
[multiply by (48x + 8)]
3 = 8(48x + 8) / (3x+12)
[multiply by (3x+12)]
3(3x +12) = 4(48x + 8)
[simplify]
9x + 36 = 192x + 32
173x = 4
x = 4 / 173
9/10 is the answer. Basic elementary math