P = 11.133 atm (purple)
T = -236.733 °C(yellow)
n = 0.174 mol(red)
<h3>Further explanation </h3>
Some of the laws regarding gas, can apply to ideal gas (volume expansion does not occur when the gas is heated),:
- Boyle's law at constant T, P = 1 / V
- Charles's law, at constant P, V = T
- Avogadro's law, at constant P and T, V = n
So that the three laws can be combined into a single gas equation, the ideal gas equation
In general, the gas equation can be written

where
P = pressure, atm
V = volume, liter
n = number of moles
R = gas constant = 0.08206 L.atm / mol K
T = temperature, Kelvin
To choose the formula used, we refer to the data provided
Because the data provided are temperature, pressure, volume and moles, than we use the formula PV = nRT
T= 10 +273.15 = 373.15 K
V=5.5 L
n=2 mol

V=8.3 L
P=1.8 atm
n=5 mol

T = 12 + 273.15 = 285.15 K
V=3.4 L
P=1.2 atm

Answer:
Yes
Explanation:
The tilt of the Earth means the Earth will lean towards the Sun (Summer) or lean away from the Sun (Winter) 6 months later. In between these, Spring and Autumn will occur. The North pole always points the same way as the Earth revolves around the Sun.
Answer:
No
Explanation:
given that, enthalpy is a state function, that means it depends only on the initial and final states, there is no difference between the enthalpy of a phase transition versus the enthalpy of a heating or cooling process, when the cooling or heating process finish in a change of phase.
It does not matter which way we take to cool or heat the substances the Enthalpy of this process will be the same.
Answer:
0.83 mL
Explanation:
Given data
- Initial concentration (C₁): 12 M
- Final concentration (C₂): 1.0 M
- Final volume (V₂): 10.0 mL
We can calculate the initial volume of HCl using the dilution rule.
C₁ × V₁ = C₂ × V₂
V₁ = C₂ × V₂ / C₁
V₁ = 1.0 M × 10.0 mL / 12 M
V₁ = 0.83 mL
The required volume of the initial solution is 0.83 mL.
Answer:
3.00 mol
Explanation:
Given data:
Mass of P₄ = 211 g
Mass of oxygen = 240 g
Moles of P₂O₅ = ?
Solution:
Chemical equation:
P₄ + 5O₂ → 2P₂O₅
Number of moles of P₄:
Number of moles = mass/ molar mass
Number of moles = 211 g / 123.88 g/mol
Number of moles = 1.7 mol
Number of moles of O₂ :
Number of moles = mass/ molar mass
Number of moles = 240 g / 32g/mol
Number of moles = 7.5 mol
Now we will compare the moles of product with reactant.
O₂ : P₂O₅
5 : 2
7.5 : 2/5×7.5 = 3.00
P₄ : P₂O₅
1 : 2
1.7 : 2×1.7 = 3.4 mol
Oxygen is limiting reactant so the number of moles of P₂O₅ are 3.00 mol.
Mass of P₂O₅:
Mass = number of moles × molar mass
Mass = 3 mol ×283.9 g/mol
Mass = 852 g