Answer:
goes with ![-\frac{\sqrt{6}+\sqrt{2}}{4}](https://tex.z-dn.net/?f=-%5Cfrac%7B%5Csqrt%7B6%7D%2B%5Csqrt%7B2%7D%7D%7B4%7D)
goes with ![\frac{\sqrt{6}-\sqrt{2}}{4}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%7B6%7D-%5Csqrt%7B2%7D%7D%7B4%7D)
goes with ![\sqrt{3}-2](https://tex.z-dn.net/?f=%5Csqrt%7B3%7D-2)
Step-by-step explanation:
![\cos(x+y)](https://tex.z-dn.net/?f=%5Ccos%28x%2By%29)
by the addition identity for cosine.
We are given:
which if we look at the unit circle we should see
.
We are also given:
which if we look the unit circle we should see
.
Apply both of these given to:
![\cos(x+y)](https://tex.z-dn.net/?f=%5Ccos%28x%2By%29)
by the addition identity for cosine.
![\frac{\sqrt{2}}{2}\frac{-1}{2}-\frac{\sqrt{2}}{2}\frac{\sqrt{3}}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%5Cfrac%7B-1%7D%7B2%7D-%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7D)
![\frac{-\sqrt{2}}{4}-\frac{\sqrt{6}}{4}](https://tex.z-dn.net/?f=%5Cfrac%7B-%5Csqrt%7B2%7D%7D%7B4%7D-%5Cfrac%7B%5Csqrt%7B6%7D%7D%7B4%7D)
![\frac{-\sqrt{2}-\sqrt{6}}{4}](https://tex.z-dn.net/?f=%5Cfrac%7B-%5Csqrt%7B2%7D-%5Csqrt%7B6%7D%7D%7B4%7D)
![-\frac{\sqrt{6}+\sqrt{2}}{4}](https://tex.z-dn.net/?f=-%5Cfrac%7B%5Csqrt%7B6%7D%2B%5Csqrt%7B2%7D%7D%7B4%7D)
Apply both of the givens to:
![\sin(x+y)](https://tex.z-dn.net/?f=%5Csin%28x%2By%29)
by addition identity for sine.
![\frac{\sqrt{2}}{2}\frac{-1}{2}+\frac{\sqrt{3}}{2}\frac{\sqrt{2}}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%5Cfrac%7B-1%7D%7B2%7D%2B%5Cfrac%7B%5Csqrt%7B3%7D%7D%7B2%7D%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D)
![\frac{-\sqrt{2}+\sqrt{6}}{4}](https://tex.z-dn.net/?f=%5Cfrac%7B-%5Csqrt%7B2%7D%2B%5Csqrt%7B6%7D%7D%7B4%7D)
![\frac{\sqrt{6}-\sqrt{2}}{4}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%7B6%7D-%5Csqrt%7B2%7D%7D%7B4%7D)
Now I'm going to apply what 2 things we got previously to:
by quotient identity for tangent
![\frac{\sqrt{6}-\sqrt{2}}{-(\sqrt{6}+\sqrt{2})}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%7B6%7D-%5Csqrt%7B2%7D%7D%7B-%28%5Csqrt%7B6%7D%2B%5Csqrt%7B2%7D%29%7D)
![-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}](https://tex.z-dn.net/?f=-%5Cfrac%7B%5Csqrt%7B6%7D-%5Csqrt%7B2%7D%7D%7B%5Csqrt%7B6%7D%2B%5Csqrt%7B2%7D%7D)
Multiply top and bottom by bottom's conjugate.
When you multiply conjugates you just have to multiply first and last.
That is if you have something like (a-b)(a+b) then this is equal to a^2-b^2.
![-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}} \cdot \frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}-\sqrt{2}}](https://tex.z-dn.net/?f=-%5Cfrac%7B%5Csqrt%7B6%7D-%5Csqrt%7B2%7D%7D%7B%5Csqrt%7B6%7D%2B%5Csqrt%7B2%7D%7D%20%5Ccdot%20%5Cfrac%7B%5Csqrt%7B6%7D-%5Csqrt%7B2%7D%7D%7B%5Csqrt%7B6%7D-%5Csqrt%7B2%7D%7D)
![-\frac{6-\sqrt{2}\sqrt{6}-\sqrt{2}\sqrt{6}+2}{6-2}](https://tex.z-dn.net/?f=-%5Cfrac%7B6-%5Csqrt%7B2%7D%5Csqrt%7B6%7D-%5Csqrt%7B2%7D%5Csqrt%7B6%7D%2B2%7D%7B6-2%7D)
![-\frac{8-2\sqrt{12}}{4}](https://tex.z-dn.net/?f=-%5Cfrac%7B8-2%5Csqrt%7B12%7D%7D%7B4%7D)
There is a perfect square in 12, 4.
![-\frac{8-2\sqrt{4}\sqrt{3}}{4}](https://tex.z-dn.net/?f=-%5Cfrac%7B8-2%5Csqrt%7B4%7D%5Csqrt%7B3%7D%7D%7B4%7D)
![-\frac{8-2(2)\sqrt{3}}{4}](https://tex.z-dn.net/?f=-%5Cfrac%7B8-2%282%29%5Csqrt%7B3%7D%7D%7B4%7D)
![-\frac{8-4\sqrt{3}}{4}](https://tex.z-dn.net/?f=-%5Cfrac%7B8-4%5Csqrt%7B3%7D%7D%7B4%7D)
Divide top and bottom by 4 to reduce fraction:
![-\frac{2-\sqrt{3}}{1}](https://tex.z-dn.net/?f=-%5Cfrac%7B2-%5Csqrt%7B3%7D%7D%7B1%7D)
![-(2-\sqrt{3})](https://tex.z-dn.net/?f=-%282-%5Csqrt%7B3%7D%29)
Distribute:
![\sqrt{3}-2](https://tex.z-dn.net/?f=%5Csqrt%7B3%7D-2)