Since we have a cubic root, we're interested in factoring cubes inside the root, so that we can take them out. If we factor 648, we have

So, we have
![3x\sqrt[3]{648 x^4 y^8} = \sqrt[3]{3\times 6^3\cdot x^3\cdot x \cdot y^6\cdot y^2}=3x\cdot 6\cdot x\cdot y^2\sqrt[3]{3\cdot x\cdot y^2}](https://tex.z-dn.net/?f=3x%5Csqrt%5B3%5D%7B648%20x%5E4%20y%5E8%7D%20%3D%20%5Csqrt%5B3%5D%7B3%5Ctimes%206%5E3%5Ccdot%20x%5E3%5Ccdot%20x%20%5Ccdot%20y%5E6%5Ccdot%20y%5E2%7D%3D3x%5Ccdot%206%5Ccdot%20x%5Ccdot%20y%5E2%5Csqrt%5B3%5D%7B3%5Ccdot%20x%5Ccdot%20y%5E2%7D)
And the result simplifies to
![18x^2y^2\sqrt[3]{3xy^2}](https://tex.z-dn.net/?f=18x%5E2y%5E2%5Csqrt%5B3%5D%7B3xy%5E2%7D)
X + (x + 1) + (x + 2) + (x + 3) = -26
Even though it says negative, the same rules apply.
4x + 6 = -26
4x = -32
x = -8
-8, -7, -6, -5
Hope this helps!
Answer:
The answer is A. 145
Step-by-step explanation:
Hope this helped : )
Answer:
AB= 156
Step-by-step explanation:
96-30 =66
A=66
66+90 = 156
Answer:
6720 ways different
Step-by-step explanation:
In this case, we must calculate the different ways using the permutation formula:
nPr = n! / (n - r)!
where n is the total number of people and r would come being the group of person that you want to put together the groups, therefore n = 8 and r = 5
replacing:
8P5 = 8! / (8 - 5)!
8P5 = 6720
That is to say that there are 6720 ways different winning groups are possible