Answer:
170 N
Explanation:
Since Force F = ma were m = mass = 85 kg and a = acceleration = 2.0 m/s².
So the net force on the bicycle is
F = ma = 85 kg × 2.0 m/s² = 170 N
Answer:
16 m/s^2
Explanation:
acceleration tangential = (v^2)/r
a=400/25
a=16 m/s^2
Side note: next time, be more specific when asking about acceleration in circular motion. There's more than one type! Example:
angular acceleration=acceleration tangential/r
angular acc.=16/25
angular acc.=0.64 rad/s^2
Answer:
a=3.53 m/s^2
Explanation:
Vo=0 m/s (because he is not moving at the start)
V1=15 m/s
t= 4.25 s
a = (V1-Vo) / t = 15/4.25 = 3.53 m/s^2
T is in seconds (s)
<span>2pi is dimensionless </span>
<span>L is in meters (m) </span>
<span>g is in meters per second squared (m/s^2) </span>
<span>so you can write the equation for the period of the simple pendulum in its units... </span>
<span>s=sqrt(m/(m/s^2)) </span>
<span>simplify</span>
<span>s=sqrt(m*s^2*1/m) cancelling the m's </span>
<span>s=sqrt(s^2) </span>
<span>s=s </span>
<span>therefore the dimensions on the left side of the equation are equal to the dimensions on the right side of the equation.</span>
Answer:
C) True. At maximum displacement, its instantaneous velocity is zero.
Explanation:
The simple harmonic movement is given by
x = A cos wt
Speed
v = - A w sin wt
At the point of maximum displacement x = A
A = A cos wt
cos wt = 1
wt = 0
We replace the speed
v = -Aw sin 0 = A w
Speed is maximum
Let's review the claims
A) False. Speed is zero
B) False. It can be determined
C) True. Agree with our result
D) False. When one is maximum the other is minimum