When an air bubble gets trapped inside the gas collection tube, then the gas that is actually collected becomes impure. This will definitely give an inaccurate result and the calculated percentage yield will be wrong. I hope that this is the answer that you were looking for and it has come to your help.
Answer:
The magnification is 
Explanation:
From the question we are told that
The object distance is 
The focal length is 
From the lens equation we have that

=> 
substituting values


=> 
=> 
The magnification is mathematically represented as

substituting values


False. That's exactly how scientific theories begin
Answer:
The heat flux between the surface of the pond and the surrounding air is<em> 60 W/</em>
<em> </em>
Explanation:
Heat flux is the rate at which heat energy moves across a surface, it is the heat transferred per unit area of the surface. This can be calculated using the expression in equation 1;
q = Q/A ...............................1
since we are working with the convectional heat transfer coefficient equation 1 become;
q = h (
) ........................2
where q is the heat flux;
Q is the heat energy that will be transferred;
h is the convectional heat coefficient = 20 W/
.K;
is the surface temperature =
C 23°C + 273.15 = 296.15 K;
is the surrounding temperature =
C = 20°C + 273.15 = 293.15 K;
The values are substituted into equation 2;
q = 20 W/
.K ( 296.15 K - 293.15 K)
q = 20 W/
.K ( 3 K)
q = 60 W/
Therefore the heat flux between the surface of the pond and the surrounding air is 60 W/
Answer:
Friction plays a key role in how ruptures unzip faults in the earth's crust," says Vito Rubino, research scientist at Caltech's Division of Engineering and Applied Science (EAS). "Assumptions about dynamic friction affect a wide range of earthquake science predictions, including how fast ruptures will occur, the nature of ground shaking, and residual stress levels on faults. Yet the precise nature of dynamic friction remains one of the biggest unknowns in earthquake science."
hope it helps