All waves are known to undergo reflection or the bouncing off of an obstacle. Most people are very accustomed to the fact that light waves also undergo reflection. The reflection of light waves off of a mirrored surface results in the formation of an image.
Answer:
q_poly = 14.55 KJ/kg
Explanation:
Given:
Initial State:
P_i = 550 KPa
T_i = 400 K
Final State:
T_f = 350 K
Constants:
R = 0.189 KJ/kgK
k = 1.289 = c_p / c_v
n = 1.2 (poly-tropic index)
Find:
Determine the heat transfer per kg in the process.
Solution:
-The heat transfer per kg of poly-tropic process is given by the expression:
q_poly = w_poly*(k - n)/(k-1)
- Evaluate w_poly:
w_poly = R*(T_f - T_i)/(1-n)
w_poly = 0.189*(350 - 400)/(1-1.2)
w_poly = 47.25 KJ/kg
-Hence,
q_poly = 47.25*(1.289 - 1.2)/(1.289-1)
q_poly = 14.55 KJ/kg
A magnetic domain is a group of atoms aligns with magnetic poles. Domains are usually <span>light and dark stripes visible within each grain.</span>
Answer:
Initial velocity = 39.2m/s
Maximum height is 78.4m
Explanation:
Given

Solving (a): Initial Velocity
Using first law of motion:

Where


<em />
<em> [g represents acceleration due to gravity]</em>

Substitute these value in the above formula:



Take g as 9.8m/s²


<em>Hence, initial velocity = 39.2m/s</em>
Solving (b): Maximum Height
This will be solved using second equation of motion

This becomes

Substitute values for u, t and g



<em>Hence, the maximum height is 78.4m</em>
Answer:
a) W = 10995.6 J
b) W = - 9996 J
c) Kf = 999.6 J
d) v = 5.77 m/s
Explanation:
Given
m = 60 Kg
h = 17 m
a = g/10
g = 9.8 m/s²
a) We can apply Newton's 2nd Law as follows
∑Fy = m*a ⇒ T - m*g = m*a ⇒ T = (g + a)*m
where T is the force exerted by the cable
⇒ T = (g + (g/10))*m = (11/10)*g*m = (11/10)*(9.8 m/s²)*(60 Kg)
⇒ T = 646.8 N
then we use the equation
W = F*d = T*h = (646.8 N)*(17 m)
W = 10995.6 J
b) We use the formula
W = m*g*h ⇒ W = (60 Kg)(9.8 m/s²)(-17 m)
⇒ W = - 9996 J
c) We have to obtain Wnet as follows
Wnet = W₁ + W₂ = 10995.6 J - 9996 J
⇒ Wnet = 999.6 J
then we apply the equation
Wnet = ΔK = Kf - Ki = Kf - 0 = Kf
⇒ Kf = 999.6 J
d) Knowing that
K = 0.5*m*v² ⇒ v = √(2*Kf / m)
⇒ v = √(2*999.6 J / 60 Kg)
⇒ v = 5.77 m/s