Answer:
-195.8º < -191.5º < 100º
Explanation:
Water, or H20, starts boiling at 100ºC.
Nitrogen, or N2, starts boiling at -195.8ºC.
Carbon monoxide, or C0, starts boiling at -191.5ºC.
When we place these in order from decreasing boiling point:
-195.8º goes first, then -191.5º, and 100º goes last.
Answer: The percentage by mass of sulphur in
is 9.36%
Explanation:
Mass percent of an element is the ratio of mass of that element by the total mass expressed in terms of percentage.

Given: mass of sulphur = 32 g/mol
mass of
= 342 g/mol
Putting in the values we get:

The percentage by mass of sulphur in
is 9.36%
Explanation:
The given data is as follows.
Weight of solute = 75.8 g, Molecular weight of solute (toulene) = 92.13 g/mol, volume = 200 ml
- Therefore, molarity of toulene is calculated as follows.
Molarity = 
= 
= 4.11 M
Hence, molarity of toulene is 4.11 M.
- As molality is the number of moles of solute present in kg of solvent.
So, we will calculate the molality of toulene as follows.
Molality = 
= 
= 8.6 m
Hence, molality of given toulene solution is 8.6 m.
- Now, calculate the number of moles of toulene as follows.
No. of moles = 
= 
= 0.8227 mol
Now, no. of moles of benzene will be as follows.
No. of moles = 
= 
= 1.2239 mol
Hence, the mole fraction of toulene is as follows.
Mole fraction = 
= 
= 0.402
Hence, mole fraction of toulene is 0.402.
- As density of given solution is 0.857
so, we will calculate the mass of solution as follows.
Density = 
0.857
=
(As 1
= 1 g)
mass = 171.4 g
Therefore, calculate the mass percent of toulene as follows.
Mass % = 
= 
= 44.22%
Therefore, mass percent of toulene is 44.22%.
I think its A.
if one force cannot overcome the other, the object remains stationary.
Chemical<span> reactions takes place in plants and animals, this result in the formation of substances in some plants and animals that can be used to treat illness. </span>Chemistry<span>is </span>important<span> to everyday </span>life<span>, because it provides medicine. The food we consume each day comes directly from </span>chemical<span> processes.</span>