Here we have to get the spin of the other electron present in a orbital which already have an electron which has clockwise spin.
The electron will have anti-clockwise notation.
We know from the Pauli exclusion principle, no two electrons in an atom can have all the four quantum numbers i.e. principal quantum number (n), azimuthal quantum number (l), magnetic quantum number (m) and spin quantum number (s) same. The importance of the principle also restrict the possible number of electrons may be present in a particular orbital.
Let assume for an 1s orbital the possible values of four quantum numbers are n = 1, l = 0, m = 0 and s = 
.
The exclusion principle at once tells us that there may be only two unique sets of these quantum numbers:
1, 0, 0, +
and 1, 0, 0, -
.
Thus if one electron in an orbital has clockwise spin the other electron will must be have anti-clockwise spin.
Answer:
The answer to your question is 64.02 g of H₂O
Explanation:
Data
Mass of magnesium sulfate hepta hydrated = 125 g
Mass of water = ?
Process
1.- Calculate the molar mass of the salt and the molar mass of water
molar mass of MgSO₄ 7H₂O = 24 + 32 + 64 + 14 + 112 = 246 g
mass of H₂O = 2 + 16 = 18 g
2.- Use proportions to calculate the mass of water in the epsom salt
246 g MgSO₄ 7H₂O------------------------- 126 g of H₂O
125 g ------------------------- x
x = (125 x 126)/246
x = 15750/246
x = 64.02 g of H₂O
Answer:
The answer is 2i on right hand side.
Explanation:
We should star by checking the equation from right.
First we check how many Zn r there in left hand side. Which is 1. Let us check how many Znr there in right hand side, there is 1.So Zn is balanced, and don't worry about Znplus2 on right hand side it is just the ions not how many zinc r there.
Now let us check how many I are there left hand side. Which is 2. Now how many I are there in right hand side? Only 1.
So we put 2 behind I.
Now there r 2 I on both sides.
Its simple actually.