Answer:
Time, t = 12 minutes
Explanation:
It is given that,
A cyclist rides 16.0 km east, then 8.0 km west, then 8.0 km east, then 32.0 km west, and finally 11.2 km east. Let west direction is negative and east direction is positive. The displacement of the cyclist is :

d = 4800 m
Let us assumed that the average speed of the cyclist is, v = 24 km/h = 6.66667 m/s
Let t is the time taken by the cyclist to complete the trip. The velocity of an object is given by :



t = 719.99 seconds
t = 720 seconds
or
t = 12 minutes
So, the time taken by the cyclist to complete the trip is 12 minutes. Yes, the time taken by the cyclist to complete the trip is reasonable. Hence, this is the required solution.
The answer to this question is Helium
To develop the problem it is necessary to apply the kinematic equations for the description of the position, speed and acceleration.
In turn, we will resort to the application of Newton's second law.
PART A) For the first part we look for the time, in a constant acceleration, knowing the speeds and the displacement therefore we know that,

Where,
X = Desplazamiento
V = Velocity
t = Time
In this case there is no initial displacement or initial velocity, therefore

Clearing for time,



PART B) This is a question about the impulse of bodies, where we turn to Newton's second law, because:
F = ma
Where,
m=mass
a = acceleration
Acceleration can also be written as,

Then





Negative symbol is because the force is opposite of the direction of moton.
PART C) Acceleration through kinematics equation is defined as




The gravity is equal to 0.8, then the acceleration is


Answer:
5.791244495 KNm
Explanation:
The height h is given by,
Potential energy, PE is given by
PE=mgh where m is mass of the woman, g is acceleration due to gravity whose value is taken as
and h is already given hence substituting 77 Kg for m we obtain
PE=21.6567095 KNm
We also know that Kinetic energy is given by
where v is the velocity and substituting v for 20.3 we obtain
KE=15.865465 KNm
Friction work is the difference between PE and KE hence
Friction work=21.6567095 KNm-15865.465 Nm=5.791244495 KNm
Answer:
36.74 N
Explanation:
Given that:
A crate of oranges with a total mass (m) = 6.7 kg
angle θ = 0.7 rad
angle θ = 
angle θ = 40°
acceleration = 4.2 m/s²
Given that:
T cosθ = ma
T cos 40° = 6.7 × 4.2
T = 
T = 
T = 36.74 N
Thus, the tension in the rope = 36.74 N