Answer:
a. 120 W
b. 28.8 N
Explanation:
To a good approximate, the only external force that does work on a cyclist moving on level ground is the force of air resistance. Suppose a cyclist is traveling at 15 km/h on level ground. Assume he is using 480 W of metabolic power.
a. Estimate the amount of power he uses for forward motion.
b. How much force must he exert to overcome the force of air resistance?
(a)
He is 25% efficient, therefore the cyclist will be expending 25% of his power to drive the bicycle forward
Power = efficiency X metabolic power
= 0.25 X 480
= 120 W
(b)
power if force times the velocity
P = Fv
convert 15 km/h to m/s
v = 15 kmph = 4.166 m/s
F = P/v
= 120/4.166
= 28.8 N
definition of terms
power is the rate at which work is done
force is that which changes a body's state of rest or uniform motion in a straight line
velocity is the change in displacement per unit time.
I believe it would be 4.4
Answer:
The samples specific heat is 14.8 J/kg.K
Explanation:
Given that,
Weight = 28.4 N
Suppose, heat energy 
Temperature = 18°C
We need to calculate the samples specific heat
Using formula of specific heat


Where, m = mass
c = specific heat
= temperature
Q = heat
Put the value into the formula


Hence, The samples specific heat is 14.8 J/kg.K
Answer:
7.67001846 km/s or 17157.38529 mph
Explanation:
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
M = Mass of the Earth = 5.972 × 10²⁴ kg
m = Mass of satellite
v = Velocity of satellite
The distance between the Earth's center and the satellite is
r = 6371000+400000 = 6771000 m
As the centripetal force balances the force of gravity we have

Converting to mph

The velocity of the satellite is 7.67001846 km/s or 17157.38529 mph
Hi there!
I believe the answer is transversal or transverse.