Answer:
Its heat capacity is higher than that of any other liquid or solid, its specific heat being 1 cal / g, this means that to raise the temperature of 1 g of water by 1 ° C it is necessary to provide an amount of heat equal to a calorie . Therefore, the heat capacity of 1 g of water is equal to 1 cal / K.
Explanation:
The water has a very high heat capacity, a large amount of heat is necessary to raise its temperature 1.0 ° K. For biological systems this is very important because the cellular temperature is modified very little in response to metabolism. In the same way, aquatic organisms, if water did not possess that quality, would be very affected or would not exist.
This means that a body of water can absorb or release large amounts of heat, with little temperature change, which has a great influence on the weather (large bodies of water in the oceans take longer to heat and cool than the ground land). Its latent heats of vaporization and fusion (540 and 80 cal / g, respectively) are also exceptionally high.
Answer:
(c) 97 dB sound intensity level
Explanation:
We have given the intensity of the loud car horn 
We know that 
Now the sound intensity level is given by
, which is nearly equal to 97
So the sound intensity level will be 97 dB
So option (c) will be the correct option
Because it does not produce waste, thus it doesn't harm the environment. also renewable sources are infinite.
C. 2000 calories.
Explanation/calculation:
Specific heat capacity = calories / mass * (final temperature - initial temperature)
1 = calories / 100 * (60 - 40)
1 = calories / 100 * 20
1 * (100 * 20) = calories
1 * 2000 = calories
2000 = calories
Given, mass of titanium metal = 144 g
Heat of fusion of titanium metal= 18.7 J/g
Heat of fusion is the amount of heat energy needed to change the state of one gram of a substance from solid to liquid or vice-versa.
Thus, 18.7 J of heat is needed to melt one gram of titanium metal.
Therefore, heat needed to melt 144 g of titanium metal = 18.7×144
= 2692.8 J