<h2>
The balloon is moving when it is halfway down the building at 20.78 m/s.</h2>
Explanation:
We have equation of motion v² = u² + 2as
Initial velocity, u = 0 m/s
Acceleration, a = 9.81 m/s²
Displacement, s = 0.5 x 44 = 22 m
Substituting
v² = u² + 2as
v² = 0² + 2 x 9.81 x 22
v² = 431.64
v = 20.78 m/s
Velocity at 22 m = 20.78 m/s
The balloon is moving when it is halfway down the building at 20.78 m/s.
Answer:
F(friction) = μ M g definition of frictional force
μ = F / (M g) = 11 N / 50 N = .22
Answer:
d = 61.75 m
Explanation:
Given that,
A ball droped from a building.
We need to find how fast is it traveling after falling 3.55 s.
As it is dropped, its initial velocity is equal to 0.
Let d is the distance it covers after falling 3.55 s.
We can use second equation of motion to find d.

Here, u = 0 and a =g

So, it will cover 61.75 m after falling 3.55 seconds.
Answer:
2 m/s
Explanation:
The total time = 1 hour
The vertical displacement = 1 - 1
Vertical displacement = 0
Horizontal displacement = 4 - 2
Horizontal displacement = 2
Total displacement = sqrt (2^2 - 0^2)
Displacement - 2
Average velocity is displacement/time
= 2x1
= 2 m/s
The average velocity is 2 metres per second.