Answer:d
Explanation: oil would form droplets but only tiny ones because it’s surface tension is lower than that of water
A wave is basically propagation of disturbances—that is, deviations from a state of rest or equilibrium—from place to place in a regular and organized way. Most familiar are surface waves on water, but both sound and light travel as wavelike disturbances, and the motion of all subatomic particles exhibits wavelike properties.
Answer:
3.28 m
3.28 s
Explanation:
We can adopt a system of reference with an axis along the incline, the origin being at the position of the girl and the positive X axis going up slope.
Then we know that the ball is subject to a constant acceleration of 0.25*g (2.45 m/s^2) pointing down slope. Since the acceleration is constant we can use the equation for constant acceleration:
X(t) = X0 + V0 * t + 1/2 * a * t^2
X0 = 0
V0 = 4 m/s
a = -2.45 m/s^2 (because the acceleration is down slope)
Then:
X(t) = 4*t - 1.22*t^2
And the equation for speed is:
V(t) = V0 + a * t
V(t) = 4 - 2.45 * t
If we equate this to zero we can find the moment where it stops and begins rolling down, that will be the highest point:
0 = 4 - 2.45 * t
4 = 2.45 * t
t = 1.63 s
Replacing that time on the position equation:
X(1.63) = 4 * 1.63 - 1.22 * 1.63^2 = 3.28 m
To find the time it will take to return we equate the position equation to zero:
0 = 4 * t - 1.22 * t^2
Since this is a quadratic equation it will have to answers, one will be the moment the ball was released (t = 0), the other will eb the moment when it returns:
0 = t * (4 - 1.22*t)
t1 = 0
0 = 4 - 1.22*t2
1.22 * t2 = 4
t2 = 3.28 s
<span>A unicellular organism, also known as a single-celled organism, is an organism that consists of only one cell, unlike a multicellular organism that consists of more than one cell. ... The main groups of unicellular organisms are bacteria, archaea, protozoa, unicellular algae and unicellular fungi.</span>