When a sound wave meets an obstacle, some of the sound is reflected back from the front surface and some of the sound passes into the obstacle material, where it is absorbed or transmitted through the material.
Reflection and absorption are dependent on the wavelength of the sound. The percentage of the sound transmitted through an obstacle depends on how much sound is reflected and how much is absorbed. We are assuming that the obstacle is relatively large, such that no sound passes around the edges.
Hi there!
Recall the following:

k = Coulomb's Constant (Jm/C²)
q = Charge (C)
r = distance between charges (m)
To calculate the electric force between the two charges, we can simply divide by another 'r' (distance):

D cardio-respiratory Endurance\
Answer: Acceleration = 5m/s^2; Distance traveled = 320 m
Explanation:
Velocity of car = 40m/s
Time taken = 8 seconds
Acceleration = ?
Distance traveled = ?
A) Since acceleration is the rate of change of velocity per unit time
i.e acceleration = velocity / time
acceleration = 40m/s / 8 seconds
Acceleration = 5m/s^2
B) To get how far the car traveled before stopping, obtain the distance from the formula:
velocity = distance traveled / time
40m/s = distance / 8 seconds
Distance = 40m/s x 8 seconds
Distance = 320 m
Thus, the car’s acceleration is 5m/s^2 while it traveled 320 metres before stopping.
Answer:
727.67 km
Explanation:
Sine they have Same distance D
distance = speed * time
D = 5.08t
D = 8.3312(t+55.9)
so
5.08t = 8.3312(t+55.9) t in
3.2512t = 465.71
t = 143.2s
Subtitute t
D=5.08 t
= 5.08 × 143.2
= 727.67km