<u>Answer:</u>
2N/cm
<u>Step-by-step explanation:</u>
According to the Hooke's Law, the force required to extend or compress a spring is directly proportional distance you can stretch it, which is represented as:

where,
is the force which is stretching or compressing the spring,
is the spring constant; and
is the distance the spring is stretched.
Substituting the given values to find the elastic constant
to get:




Therefore, the elastic constant is 2 Newton/cm.
The time for the police car to catch up with the speeding motorist is 7.6 seconds.
<h3>What time will the police car catch up with the speeding motorist?</h3>
The police car and the motorist will cover equal distances.
Let the distance covered be d.
Distance covered by the motorist = speed * time
time = t, speed = 30 m/s
d = 30t
Distance covered by the police car = acceleration * (time)
time = t - 2, acceleration = 5.0 m/s²
d = 5(t-2)²
d = 5(t² - 4t + 4)
d = 5t² - 20t + 20
Equating the two equations for distance
5t² - 20t + 20 = 30t
5t² - 50t + 20 = 0
Solving for t using the quadratic formula:
t = 9.6 second or 0.4 seconds
Since t > 2, t = 9.6 seconds
t - 2 = 9.6 - 2
t - 2 = 7.6 seconds
Therefore, the time for the police car to catch up with the speeding motorist is 7.6 seconds.
Learn more about distance and acceleration at: brainly.com/question/14344386
#SPJ1
Answer:
The direction of the momentum of the large ball after the collision with respect to east is 146.58°.
Explanation:
Given that,
Mass of large ball = 3.0 kg
Mass of steel ball = 1.0 kg
Velocity = 3.0 kg
After collision,
Velocity = 2.0 m/s
Using conservation of momentum




The direction of the momentum



The direction of the momentum with respect to east

Hence, The direction of the momentum of the large ball after the collision with respect to east is 146.58°.
According to the Law of Inertia, our upper body was in rest and it wanted to remain in that condition.....
According to Google, you can increase the strength of an electromagnetic's field by C. using a stronger ferromagnetic material for the core.