Answer:
C. The sum remains the same.
Explanation:
The sum of the kinetic and potential energy remains the same as the all rolls from point A to E.
We know this based on the law of conservation of energy that is in play within the system.
The law of conservation of energy states that "energy is neither created nor destroyed within a system but transformed from one form to another".
- At the top of the potential energy is maximum
- As the ball rolls down, the potential energy is converted to kinetic energy.
- Potential energy is due to the position of a body
- Kinetic energy is due to the the motion of the body
<span>The plates make up Earth's outer shell, called the lithosphere. (This includes the crust and uppermost part of the mantle.) Churning currents in the molten rocks below propel them along like a jumble of conveyor belts in disrepair. Most geologic activity stems from the interplay where the plates meet or divide.</span>
Answer:
1.25 kgm²/sec
Explanation:
Disk inertia, Jd =
Jd = 1/2 * 3.7 * 0.40² = 0.2960 kgm²
Disk angular speed =
ωd = 0.1047 * 30 = 3.1416 rad/sec
Hollow cylinder inertia =
Jc = 3.7 * 0.40² = 0.592 kgm²
Initial Kinetic Energy of the disk
Ekd = 1/2 * Jd * ωd²
Ekd = 0.148 * 9.87
Ekd = 1.4607 joule
Ekd = (Jc + 1/2*Jd) * ω²
Final angular speed =
ω² = Ekd/(Jc+1/2*Jd)
ω² = 1.4607/(0.592+0.148)
ω² = 1.4607/0.74
ω² = 1.974
ω = √1.974
ω = 1.405 rad/sec
Final angular momentum =
L = (Jd+Jc) * ω
L = 0.888 * 1.405
L = 1.25 kgm²/sec
Answer:
Latent period.
Explanation:
Immediately following the arrival of the stimulus at a skeletal muscle cell there is a short period called the Latent period during which the events of excitation-contraction coupling occur.
The period of incubation, the interval preceding exposure to a pathogen, toxin or radiation, and when effects occur. Muscle contracting, the time between a nerve stimulus, and muscle contraction.