The wavelengths of the constituent travelling waves CANNOT be 400 cm.
The given parameters:
- <em>Length of the string, L = 100 cm</em>
<em />
The wavelengths of the constituent travelling waves is calculated as follows;

for first mode: n = 1

for second mode: n = 2

For the third mode: n = 3

For fourth mode: n = 4

Thus, we can conclude that, the wavelengths of the constituent travelling waves CANNOT be 400 cm.
The complete question is below:
A string of length 100 cm is held fixed at both ends and vibrates in a standing wave pattern. The wavelengths of the constituent travelling waves CANNOT be:
A. 400 cm
B. 200 cm
C. 100 cm
D. 67 cm
E. 50 cm
Learn more about wavelengths of travelling waves here: brainly.com/question/19249186
Answer:
hi here is your answer and this is a very important question.
Explanation:
A lever is a rigid bar with three parts: the fixed point around which the bar pivots is the fulcrum: the effort arm (in-lever arm) is the part of the lever to which force is applied; the resistance arm (out-lever arm) is the part that bears the load to be moved.
Answer:
Velocity = 0.309 m/s
Along negative x axis
Explanation:
A pulse moving to the right along the x axis is represented by the wave function
y(x,t) = 2/ (x - 3t)² + 1
At t =0
y(x,0) = 2/ ((x - 3(0))² + 1)
=2 / (x² + 1)
At t = 1
y(x,t) = 2/ ((x - 3(1))² + 1)
= 2 /(( x - 3)² + 1)
At t = 2
y(x,t) = 2/ ((x - 3(2))² + 1)
= 2 /(( x - 6)² + 1)
For the pulse with expression y(x,t) = 4.5
²
The Velocity is
V = 2.7 / 8.73
= 0.309 m/s
Hi there,
Unlike velocity,speed is scalar,which means it is described by MAGNITUDE only.
<span>(1) </span>Through the Second
Law of motion, the equation for Force is:
F = m x a
Where
m is mass and a is acceleration (deceleration)
<span>(2) </span>Distance is
calculated through the equation,
D
= Vi^2 / 2a
Where
Vi is initial velocity
<span>(3) </span>Work is calculated
through the equation,
W = F x D
Substituting
the known values,
Part
A:
<span>(1) </span> F = (85
kg)(2 m/s^2) = 170 N
<span>(2) </span> D = (37
m/s)^2 / (2)(2 m/s^2) = 9.25 m
<span>(3) </span> W = (170
N)(9.25 m) = 1572.5 J
Part
B:
<span>(1) </span> F = (85 kg)(4
m/s^2) = 340 N
<span>(2) </span>D = (37 m/s)^2 /
(2)(4 m/s^2) = 4.625 m
<span>(3) </span><span> W = (340
N)(4.625 m) = 1572.5 J</span>