What kind of the question is that. We aren't really buried. We either go to Heaven or the other place. Some people say it's over when your buried in the ground but believers don't really think that.
The ball's gravitational potential energy is converted into kinetic energy as it falls toward the ground.
<h3>How can the height of a dropped ball be determined?</h3>
Y = 1/2 g t 2, where y is the height above the ground, g = 9.8 m/s2, and t = 1.3 s, is the formula for problems like these. Any freely falling body with an initial velocity of zero meters per second can use this formula. figuring out how much y is.
A ball drops from the top of a building and picks up speed as it descends. Its speed is increasing by 10 m/s every second. What we refer to as motion with constant acceleration is, for example, a ball falling due to gravity.
The ball's parabolic motion causes it to move at a speed of 26.3 m/s right before it strikes the ground, which is faster than its straight downhill motion, which has a speed of 17.1 m/s. Take note of the rising positive y direction in the above graphic.
To Learn more About potential energy, Refer:
brainly.com/question/14427111
#SPJ10
The final position of the object after 2 s is 11 m.
Motion: This can be defined as the change in position of a body.
⇒ Formula:
- x = x₀+v₀t+1/2(at²)........................ Equation 1
⇒ Where:
- x = Final position of the object
- x₀ = Starting position
- v₀ = Starting velocity
- t = time
- a = acceleration
From the question,
⇒ Given:
- x₀ = 4.5 m/s
- t = 2 s
- x₀ = 2m
- a = 0 m/s²
⇒ Substitute these values into equation 1
- x = 2+(4.5×2)+1/2(0²×2)
- x = 2+9+0
- x = 11 m
Hence, The final position of the object after 2 s is 11 m
Learn more about motion here: brainly.com/question/15531840
Answer:
486,750 kg*m/s
Explanation:
Momentum is mass*velocity
M = m*v
M = 8850kg*55m/s
M = 486,750 kg*m/s