a. I've attached a plot of the surface. Each face is parameterized by
•
with
and
;
•
with
and
;
•
with
and
;
•
with
and
; and
•
with
and
.
b. Assuming you want outward flux, first compute the outward-facing normal vectors for each face.





Then integrate the dot product of <em>f</em> with each normal vector over the corresponding face.










c. You can get the total flux by summing all the fluxes found in part b; you end up with 42π - 56/3.
Alternatively, since <em>S</em> is closed, we can find the total flux by applying the divergence theorem.

where <em>R</em> is the interior of <em>S</em>. We have

The integral is easily computed in cylindrical coordinates:


as expected.
Answer:
The decrease is due to the bulge at the equator (putting more distance between the rest of the planet and the surface
Explanation:
5 second fall starting at 0 m/s
ball strikes ground at a speed = 49 meters per second.
Answer:

Explanation:
When an electromagnetic wave passes through the interface between two mediums, it undergoes refraction, which means that it bents and its speed and its wavelength change.
In particular, the wavelength of an electromagnetic wave in a certain medium is related to the index of refraction of the medium by:

where
is the wavelength in a vacuum (air is a good approximation of vacuum)
n is the refractive index of the medium
In this problem:
is the original wavelength of the wave
n = 1.47 is the index of refraction of corn oil
Therefore, the wavelength of the electromagnetic wave in corn oil is:

Answer: The velocity at different marked time points are given as
t1 = -
t2 = +
t3 = +
t4 = -
t5 = 0
Explanation:
The slope of the tangent of the curve indicates the instantaneous velocity. So if the slope of the tangent is positive, that Is, the tangent makes a positive angle (above the horizontal axis) with the horizontal
axis, then the velocity at this point is positive, and if the slope of the tangent is negative, that is the tangent makes a negative angle with the horizontal axis (below the horizontal axis), then the velocity at this point is negative.
When the tangent of the line is parallel to the horizontal axis, the velocity is 0.
From the position-time graph attached, the sign on the instantaneous velocity for each time marked on the graph is given below
t1 = -
t2 = +
t3 = +
t4 = -
t5 = 0
QED!