To the Earth in less than ten minutes.
Assumes the shape and volume of its container
<span>particles can move past one another</span>
P=M(mass)G(Gravity)H(Height)
Gravity=9.8
M=1.5 G=9.8 H=35
so multiply all
=514.5 potential energy
Calculate the magnetic field strength at the ground. Treat the transmission line as infinitely long. The magnetic field strength is then given by:
B = μ₀I/(2πr)
B = magnetic field strength, μ₀ = magnetic constant, I = current, r = distance from line
Given values:
μ₀ = 4π×10⁻⁷H/m, I = 170A, r = 8.0m
Plug in and solve for B:
B = 4π×10⁻⁷(170)/(2π(8.0))
B = 4.25×10⁻⁶T
The earth's magnetic field strength is 0.50G or 5.0×10⁻⁵T. Calculate the ratio of the line's magnetic field strength to earth's magnetic field strength:
4.25×10⁻⁶/(5.0×10⁻⁵)
= 0.085
= 8.5%
The transmission line's magnetic field strength is 8.5% of that of earth's natural magnetic field. This is no cause for worry.