Answer:
Spring constant in N / m = 6,000
Explanation:
Given:
Length of spring stretches = 5 cm = 0.05 m
Force = 300 N
Find:
Spring constant in N / m
Computation:
Spring constant in N / m = Force/Distance
Spring constant in N / m = 300 / 0.05
Spring constant in N / m = 6,000
Answer:
14.2 m
Explanation:
Using conservation of energy:
PE at top = KE at bottom
mgh = ½ mv²
h = v² / (2g)
h = (16.7 m/s)² / (2 × 9.8 m/s²)
h = 14.2 m
Using kinematics:
Given:
v₀ = 16.7 m/s
v = 0 m/s
a = -9.8 m/s²
Find: Δy
v² = v₀² + 2aΔy
(0 m/s)² = (16.7 m/s)² + 2 (-9.8 m/s²) Δy
Δy = 14.2 m
Vocabulary should be, I think:
I. Hypothesis
II. Evidence, data
III. Experiment
What is your question exactly?
Answer:

Explanation:
<u>Accelerated Motion
</u>
When a body changes its speed at a constant rate, i.e. same changes take same times, then it has a constant acceleration. The acceleration can be positive or negative. In the first case, the speed increases, and in the second time, the speed lowers until it eventually stops. The equation for the speed vf at any time t is given by

where a is the acceleration, and vo is the initial speed
.
The train has two different types of motion. It first starts from rest and has a constant acceleration of
for 182 seconds. Then it brakes with a constant acceleration of
until it comes to a stop. We need to find the total distance traveled.
The equation for the distance is

Our data is

Let's compute the first distance X1


Now, we find the speed at the end of the first period of time


That is the speed the train is at the moment it starts to brake. We need to compute the time needed to stop the train, that is, to make vf=0



Computing the second distance


The total distance is


