Answer:
E = 8.5 * 10^6 V/m
Explanation:
In general we have the following relation between the Electric Field and the Elecric Potential:

Due to the vector nature of the electric filed, we can only know the mean Electric field E across the membrane, and take it out from the integral, that is:
E = (ΔV)/L
Where L is the thickness of the membrane and ΔV is the potential difference.
Therefore:
E = 8.53933*10^6 V/m
rounding to the first tenth:
E = 8.5 * 10^6 V/m
So we can know what is in space maybe weird or interesting stuff
Answer:
Intensity of the light (first polarizer) (I₁) = 425 W/m²
Intensity of the light (second polarizer) (I₂) = 75.905 W/m²
Explanation:
Given:
Unpolarized light of intensity (I₀) = 950 W/m²
θ = 65°
Find:
a. Intensity of the light (first polarizer)
b. Intensity of the light (second polarizer)
Computation:
a. Intensity of the light (first polarizer)
Intensity of the light (first polarizer) (I₁) = I₀ / 2
Intensity of the light (first polarizer) (I₁) = 950 / 2
Intensity of the light (first polarizer) (I₁) = 425 W/m²
b. Intensity of the light (second polarizer)
Intensity of the light (second polarizer) (I₂) = (I₁)cos²θ
Intensity of the light (second polarizer) (I₂) = (425)(0.1786)
Intensity of the light (second polarizer) (I₂) = 75.905 W/m²
Galaxies are sprawling systems of dust, gas, dark matter, and anywhere from a million to a trillion stars that are held together by gravity. Nearly all large galaxies are thought to also contain supermassive black holes at their centers.