Answer:
The value of gauge pressure at outlet = -38557.224 pascal
Explanation:
Apply Bernoulli' s Equation
+
+
=
+
+
--------------(1)
Where
= Gauge pressure at inlet = 3.70105 pascal
= velocity at inlet = 2.4 
= Gauge pressure at outlet = we have to calculate
= velocity at outlet = 3.5 
= 3.6 m
Put all the values in equation (1) we get,
⇒
+
=
+
+ 3.6
⇒ 0.294 =
+ 0.6244 + 3.6
⇒
= 0.294 - 0.6244 - 3.6
⇒
= - 3.9304
⇒
= - 38557.224 pascal
This is the value of gauge pressure at outlet.
Answer:
C
Explanation:
Most probable exchange of ions occurs for option C.
<h2>Answer:</h2>
<u>The correct option is</u><u> (C) its greater tensile strength </u>
<h2>Explanation:</h2>
Elasticity is the property of any material to return to its original shape when it is de-shaped. for example a spring comes to its original shape when it is stretched and then released. so the property that brings the spring back to its original form is called elasticity. On the other hand tensile strength is the maximum stress that a material can withstands before it breaks. Since polymers are also elastic so the greater tensile strength means greater elasticity.
The concepts required to solve this problem are those related to density, as a function of mass and volume. In turn, we will use the geometric concept defined for the volume.
The relationship between volume, density and mass is given under the function

Here,
m = Mass
V = Velocity
Rearranging for the Volume,

With our information the volume is


Now the volume of sphere is expressed as

Here r is the radius of Sphere, then rearranging to find the radius we have
![r = \sqrt[3]{\frac{3V}{4\pi}}](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7B3V%7D%7B4%5Cpi%7D%7D)
![r = \sqrt[3]{\frac{3(3.0769*10^{-3})}{4\pi}}](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7B3%283.0769%2A10%5E%7B-3%7D%29%7D%7B4%5Cpi%7D%7D)

Therefore the radius of a sphere made of this material that has a critical mass is 9.02cm
Answer:
1/Rt = 1/R1 + 1/R2 + 1/R3 +...
Explanation: