1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dalvyx [7]
1 year ago
14

A 1.2kg ball rolls forward with an acceleration of 1.11 m/s. What is the net force on the ball

Physics
1 answer:
grandymaker [24]1 year ago
8 0

Answer:

1.332 N

Explanation:

Net Force = Mass x Acceleration
1.2 x 1.11 = 1.332 N

I'm so sorry if I'm wrong.

You might be interested in
From the edge of a cliff, a 0.41 kg projectile is launched with an initial kinetic energy of 1430 J. The projectile's maximum up
NemiM [27]

Answer:

v₀ₓ = 63.5 m/s

v₀y = 54.2 m/s

Explanation:

First we find the net launch velocity of projectile. For that purpose, we use the formula of kinetic energy:

K.E = (0.5)(mv₀²)

where,

K.E = initial kinetic energy of projectile = 1430 J

m = mass of projectile = 0.41 kg

v₀ = launch velocity of projectile = ?

Therefore,

1430 J = (0.5)(0.41)v₀²

v₀ = √(6975.6 m²/s²)

v₀ = 83.5 m/s

Now, we find the launching angle, by using formula for maximum height of projectile:

h = v₀² Sin²θ/2g

where,

h = height of projectile = 150 m

g = 9.8 m/s²

θ = launch angle

Therefore,

150 m = (83.5 m/s)²Sin²θ/(2)(9.8 m/s²)

Sin θ = √(0.4216)

θ = Sin⁻¹ (0.6493)

θ = 40.5°

Now, we find the components of launch velocity:

x- component = v₀ₓ = v₀Cosθ  = (83.5 m/s) Cos(40.5°)

<u>v₀ₓ = 63.5 m/s</u>

y- component = v₀y = v₀Sinθ  = (83.5 m/s) Sin(40.5°)

<u>v₀y = 54.2 m/s</u>

7 0
2 years ago
An object takes 5 seconds to move 2 meters upward. How fast did it go?
jonny [76]

Answer:

2.5

Explanation:

5/2=2.5

8 0
3 years ago
The distance from earth to teh sun usb approxximately 93 million miles. a scientist would write that number as
erastova [34]

A scientist would write that number as 1.49 x 10⁸ kilometers .

(Or, if the scientist is in France or the UK, he might write it as  1.49 x 10⁸ kilometres .)

6 0
3 years ago
At the moment t = 0, a 20.0 V battery is connected to a 5.00 mH coil and a 6.00 Ω resistor. (a) Immediately thereafter, how does
insens350 [35]

(a) On the coil: 20 V, on the resistor: 0 V

The sum of the potential difference across the coil and the potential difference across the resistor is equal to the voltage provided by the battery, V = 20 V:

V = V_R + V_L

The potential difference across the inductance is given by

V_L(t) = V e^{-\frac{t}{\tau}} (1)

where

\tau = \frac{L}{R}=\frac{0.005 H}{6.00 \Omega}=8.33\cdot 10^{-4} s is the time constant of the circuit

At time t=0,

V_L(0) = V e^0 = V = 20 V

So, all the potential difference is across the coil, therefore the potential difference across the resistor will be zero:

V_R = V-V_L = 20 V-20 V=0

(b) On the coil: 0 V, on the resistor: 20 V

Here we are analyzing the situation several seconds later, which means that we are analyzing the situation for

t >> \tau

Since \tau is at the order of less than milliseconds.

Using eq.(1), we see that for t >> \tau, the exponential becomes zero, and therefore the potential difference across the coil is zero:

V_L = 0

Therefore, the potential difference across the resistor will be

V_R = V-V_L = 20 V- 0 = 20 V

(c) Yes

The two voltages will be equal when:

V_L = V_R (2)

Reminding also that the sum of the two voltages must be equal to the voltage of the battery:

V=V_L +V_R

And rewriting this equation,

V_R = V-V_L

Substituting into (2) we find

V_L = V-V_L\\2V_L = V\\V_L=\frac{V}{2}=10 V

So, the two voltages will be equal when they are both equal to 10 V.

(d) at t=5.77\cdot 10^{-4}s

We said that the two voltages will be equal when

V_L=\frac{V}{2}

Using eq.(1), and this last equation, this means

V e^{-\frac{t}{\tau}} = \frac{V}{2}

And solving the equation for t, we find the time t at which the two voltages are equal:

e^{-\frac{t}{\tau}}=\frac{1}{2}\\-\frac{t}{\tau}=ln(1/2)\\t=-\tau ln(0.5)=-(8.33\cdot 10^{-4} s)ln(0.5)=5.77\cdot 10^{-4}s

(e-a) -19.2 V on the coil, 19.2 V on the resistor

Here we have that the current in the circuit is

I_0 = 3.20 A

The problem says this current is stable: this means that we are in a situation in which t>>\tau, so the coil has no longer influence on the circuit, which is operating as it is a normal circuit with only one resistor. Therefore, we can find the potential difference across the resistor using Ohm's law

V=I_0 R = (3.20 A)(6.0 \Omega)=19.2 V

Then the battery is removed from the circuit: this means that the coil will discharge through the resistor.

The voltage on the coil is given by

V_L(t) = -V e^{-\frac{t}{\tau}} (1)

which means that it is maximum at the moment when the battery is disconnected, when t=0:

V_L(0)=.V

And V this time is the voltage across the resistor, 19.2 V (because the coil is now connected to the resistor, not to the battery). So, the voltage across the coil will be -19.2 V, and the voltage across the resistor will be the same in magnitude, 19.2 V (since the coil and the resistor are connected to the same points in the circuit): however, the signs of the potential difference will be opposite.

(e-b) 0 V on both

After several seconds,

t>>\tau

If we use this approximation into the formula

V_L(t) = -V e^{-\frac{t}{\tau}} (1)

We find that

V_L = 0

And since now the resistor is directly connected to the coil, the voltage in the resistor will be the same as the coil, so 0 V. This means that the coil has completely discharged, and current is no longer flowing through the circuit.

7 0
3 years ago
A solar eclipse will occur Group of answer choices
myrzilka [38]

Answer:

3. at new Moon only when the Moon is on the ecliptic.

Explanation:

  • Solar eclipse is the condition when the moon comes in between the sun and the earth. In this condition the moon casts its shadow on the earth.
  • Whether the eclipse is a total solar eclipse, a partial solar eclipse or an annular solar eclipse depends on various factors, but the position of the moon must be on the same orbital plane as that of the earth's orbit around the sun.
  • The sun is about 400 times larger than the moon in size and the sun is almost 400 times farther from the earth than the moon is, this makes it possible for the moon to cover the sun completely leading to a complete solar eclipse.
  • As we know that the orbit of the earth around the sun and the orbit of the moon around the earth is elliptical which leads to a variation in the distance from their rotating centers, so not of every eclipse the moon covers the sun completely developing an annular eclipse.
  • When the moon is close enough to the earth on the ecliptic but not completely aligned in between the sun and the earth leads to a partial solar eclipse.

7 0
3 years ago
Other questions:
  • What will a spring scale read for the weight of a 75.0-kg woman in an elevator that moves upward with constant speed of 5.8 m/s
    7·1 answer
  • One student made the incomplete diagram shown below to represent the relationship between igneous rocks, sediments, sedimentary
    14·1 answer
  • The frequency of light emitted from a source is changed. What visible evidence would indicate this?
    6·2 answers
  • Explain why the baking instructions on a box of cake mix are different for high and low elevations. Would you expect to have a l
    14·1 answer
  • An airplane flies horizontally with a constant speed of 155.0 m/s at an unknown altitude. A package is released out of the airpl
    15·1 answer
  • What is the most common kind of element in the solar wind?
    12·1 answer
  • Which is true about density?
    15·2 answers
  • So far, you’ve been working with an "ideal" pulley system. How do you think real pulley systems are different, and how would tha
    5·1 answer
  • GIVING BRAINLIST!!!!
    6·2 answers
  • What number on this diagram indicates the trend line?<br><br> A. 1<br> B. 2<br> C. 4<br> D. 7
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!