1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nikklg [1K]
3 years ago
12

This was a british philosopher is widely regarded as one of the most influential of enlightenment thinkers and commonly known as

the father of liberalism and that the mind was a blank slate or tabula rasa.
Physics
2 answers:
netineya [11]3 years ago
5 0

Answer:

John Locke

Explanation:

Darya [45]3 years ago
4 0

Is there a question? Because All your doing t explaining a british philosopher to us..

You might be interested in
The velocity of the transverse waves produced by an earthquake is 8.9 km/s, and that of the longitudinal waves is 5.1 km/s. A se
Brrunno [24]

Answer: The distance is 723.4km

Explanation:

The velocity of the transverse waves is 8.9km/s

The velocity of the longitudinal wave is 5.1 km/s

The transverse one reaches 68 seconds before the longitudinal.

if the distance is X, we know that:

X/(9.8km/s) = T1

X/(5.1km/s) = T2

T2 = T1 + 68s

Where T1 and T2 are the time that each wave needs to reach the sesmograph.

We replace the third equation into the second and get:

X/(9.8km/s) = T1

X/(5.1km/s) = T1 + 68s

Now, we can replace T1 from the first equation into the second one:

X/(5.1km/s) = X/(9.8km/s) + 68s

Now we can solve it for X and find the distance.

X/(5.1km/s) - X/(9.8km/s) = 68s

X(1/(5.1km/s) - 1/(9.8km/s)) = X*0.094s/km= 68s

X = 68s/0.094s/km = 723.4 km

6 0
4 years ago
Light does not pass through some materials. What do you think happens
Hatshy [7]

Answer:

When an electron is hit by a photon of light, it absorbs the quanta of energy the photon was carrying and moves to a higher energy state. One way of thinking about this higher energy state is to imagine that the electron is now moving faster, (it has just been "hit" by a rapidly moving photon)

A photon is a quantum of EM radiation. Its energy is given by E = hf and is related to the frequency f and wavelength λ of the radiation by. E=hf=hcλ(energy of a photon) E = h f = h c λ (energy of a photon) , where E is the energy of a single photon and c is the speed of light.

7 0
2 years ago
What best describes an impulse acting on an object? the net force on an object divided by the time of impact the velocity of an
Leona [35]

Answer:

ok so

Explanation:

Im not sure rn but ill get back to you.

7 0
2 years ago
4.0 kg objects mive a distance of 7.8 m under the action of a cinstant gorce of 5.6 N. how much work is dine on object?
alexdok [17]

Answer:

43.68 J

Explanation:

Distance moved= 7.8 m

Force = 5.6 N

Work Done= Distance moved * Force

                   = 7.8 *5.6

                      =43.68 Joules

6 0
3 years ago
A projectile is launched diagonally into the air and has a hang time of 24.5 seconds. Approximately how much time is required fo
Rasek [7]

Answer:

t=12.25\ seconds

Explanation:

<u>Diagonal Launch </u>

It's referred to as a situation where an object is thrown in free air forming an angle with the horizontal. The object then describes a known path called a parabola, where there are x and y components of the speed, displacement, and acceleration.

The object will eventually reach its maximum height (apex) and then it will return to the height from which it was launched. The equation for the height at any time t is

x=v_ocos\theta t

\displaystyle y=y_o+v_osin\theta \ t-\frac{gt^2}{2}

Where vo is the magnitude of the initial velocity, \theta is the angle, t is the time and g is the acceleration of gravity

The maximum height the object can reach can be computed as

\displaystyle t=\frac{v_osin\theta}{g}

There are two times where the value of y is y_o when t=0 (at launching time) and when it goes back to the same level. We need to find that time t by making y=y_o

\displaystyle y_o=y_o+v_osin\theta\ t-\frac{gt^2}{2}

Removing y_o and dividing by t (t different of zero)

\displaystyle 0=v_osin\theta-\frac{gt}{2}

Then we find the total flight as

\displaystyle t=\frac{2v_osin\theta}{g}

We can easily note the total time (hang time) is twice the maximum (apex) time, so the required time is

\boxed{t=24.5/2=12.25\ seconds}

4 0
3 years ago
Other questions:
  • Kyle lays a mirror flat on the floor and aims a laser at the mirror. The laser beam reflects off the mirror and strikes an adjac
    6·1 answer
  • How much heat is released to freeze 47.30 grams of copper at its freezing point of 1,085°C? The latent heat of fusion of copper
    6·2 answers
  • A water gun fires 5 squirts per second. The speed of the squirts is 15 m/s.
    10·1 answer
  • What is an electric motor? Explain its operation. 2-3 sentence
    8·2 answers
  • The electric potential at a position located a distance of 20.7 mm from a positive point charge of 8.60×10-9C and 15.1 mm from a
    14·1 answer
  • You rub a rod of glass with a cotton cloth, then dip the cloth into a Faraday pail like we will be using in lab. Will a charge s
    7·1 answer
  • A toy airplane, flying in a horizontal, circular
    5·2 answers
  • Heat from a fire warming your hands is an example of​
    9·2 answers
  • A box of unknown weight is 1 m away from the fulcrum. To balance the sides, a student applies a force of 4 N at a distance of 3
    6·1 answer
  • Homework: Making Connections to Science Ideas
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!