<span>Boyles law states that the volume of a gas is proportional to the moles of the gas when pressure and temperature are kept constant. </span>
Hello,
<span>3. The parents’ phenotypes are expressed equally in the offspring’s phenotype.</span>
Answer:
vHe / vNe = 2.24
Explanation:
To obtain the velocity of an ideal gas you must use the formula:
v = √3RT / √M
Where R is gas constant (8.314 kgm²/s²molK); T is temperature and M is molar mass of the gas (4x10⁻³kg/mol for helium and 20,18x10⁻³ kg/mol for neon). Thus:
vHe = √3×8.314 kgm²/s²molK×T / √4x10⁻³kg/mol
vNe = √3×8.314 kgm²/s²molK×T / √20.18x10⁻³kg/mol
The ratio is:
vHe / vNe = √3×8.314 kgm²/s²molK×T / √4x10⁻³kg/mol / √3×8.314 kgm²/s²molK×T / √20.18x10⁻³kg/mol
vHe / vNe = √20.18x10⁻³kg/mol / √4x10⁻³kg/mol
<em>vHe / vNe = 2.24</em>
<em />
I hope it helps!
Answer: In metallic bonds, the mobile electrons surrounding the positive ions are called <u><em>dipole</em></u>.
Answer: 600 mL
Explanation:
Given that;
M₁ = 5.85 m
M₂ = 1.95 m
V₁ = 200 mL
V₂ = ?
Now from the dilution law;
M₁V₁ = M₂V₂
so we substitute
5.85 × 200 = 1.95 × V₂
1170 = 1.95V₂
V₂ = 1170 / 1.95
V₂ = 600 mL
Therefore final volume is 600 mL