A. They are the most destructive earthquake waves.
D. They can move in a rolling pattern through rock, like an ocean wave.
Explanation:
Surface waves are seismic waves that cause the most destruction during an earthquake.
Rayleigh waves are known to cause rolling pattern of rocks just like an ocean waves.
- Seismic waves are elastic waves that notably transmits energy.
- They usually accompany earthquakes.
- There are two broad categories of these waves.
- Surface and body waves.
- Seismic surface waves are low frequency and long wavelength waves.
- They travel very close to the surface.
- They are made up of Love and Rayleigh waves.
- Love waves travels laterally in a horizontal fashion.
- Rayleigh waves rolls like ocean waves in the ground.
- The bulk of the destruction caused during an earthquakes is due to these waves.
- They are the last waves to arrive a seismic station
learn more:
Seismograph brainly.com/question/11292835
#learnwithBrainly
The pressure of the gas is 1.0 bar.
<em>pV</em> = <em>nRT</em>
<em>T</em> = (0 + 273.15) K = 273.15 K
<em>p</em> = (<em>nRT</em>)/<em>V</em> = (2.0 mol × 0.083 14 bar·L·K⁻¹mol⁻¹ × 273.15 K)/44.8 L = 1.0 bar
I think the correct answer from the choices listed above is the first option. When the the pressure is increased, the equilibrium of the reaction would favor <span>formation of reactants. One indication would be the gas that is present in the product side. Increasing the pressure would allow the products to react and form the reactants. Hope this helps.</span>
The number of moles hydrogen produced when 6 moles of sodium are used is calculated as below
2Na + 2H2O = 2NaOH +H2
by use of mole ratio between Na to H2 which is 2:1 the moles of H2 is therefore
= 6 x1/2 = 3 moles of H2