Answer:
The value is 
Explanation:
From the question we are told that
The length of the solenoid is 
The magnetic field is 
The current is 
The desired temperature is 
Generally the magnetic field is mathematically represented as

=> 
Here
is the permeability of free space with value

So

=> 
Answer:
Granite is durable, as it is hard and tough.
Gneiss has resistance to pressure and mechanical impacts
Explanation:
Granite is an igneous rock. It is mostly used in building works and construction because they are very durable. They are hard and tough and they have no internal structures.
Gneiss is used for flooring, ornamental stone, tombstones because of the fact that it shows resistances to pressure and also mechanical impacts.
<u>how they are formed in nature:</u>
In nature, granite is formed from the cooling down of hot molten magma and it's solidification before it reaches the surface of the earth.
In nature, gneiss is as a result of igneous rock or sedimentary rocks metamorphosing. Gneiss and granite are kind of similar. When subjected to great heat, granite becomes gneiss
Answer: equation for the reaction is given below
PCL2+PCL3=PCL5
Where pcl2=0.40atm,pcl3=0.27atm
Pcl5=0.0029atm
Using ∆G=-RTin(PCL5/PCl2*PCL3)
Where R=8.314J/K/mol and T=298K
∆G=-8.314*298in(0.0029/0.40*.27)
∆G=8962.6J/mol
Explanation:
Answer:
Approximately
.
Explanation:
This question suggests that the rotation of this object slows down "uniformly". Therefore, the angular acceleration of this object should be constant and smaller than zero.
This question does not provide any information about the time required for the rotation of this object to come to a stop. In linear motions with a constant acceleration, there's an SUVAT equation that does not involve time:
,
where
is the final velocity of the moving object,
is the initial velocity of the moving object,
is the (linear) acceleration of the moving object, and
is the (linear) displacement of the object while its velocity changed from
to
.
The angular analogue of that equation will be:
, where
and
are the initial and final angular velocity of the rotating object,
is the angular acceleration of the moving object, and
is the angular displacement of the object while its angular velocity changed from
to
.
For this object:
, whereas
.
The question is asking for an angular acceleration with the unit
. However, the angular displacement from the question is described with the number of revolutions. Convert that to radians:
.
Rearrange the equation
and solve for
:
.