Answer:
=20 turns
Explanation:
The given case is a step down transformer as we need to reduce 120 V to 6 V.
number of turns on primary coil N_{P}= 400
current delivered by secondary coil I_{S}= 500 mA
output voltage = 6 V (rms)
we know that

putting values we get


to calculate number of turns in secondary

therefore,
=20 turns
"The table represents the speed of a car in a northern direction over several seconds. Column 1 would be on the x-axis, and Column 2 would be on the y-axis."
typical plot is speed or velocity on the y-axis n time on the x-axis so the ans is Column 1 should be titled “Time,” and Column 2 should be titled “Velocity.”
Answer:
F=ma
Explanation:
Force = mass * acceleration
Answer:
The spring force constant is
.
Explanation:
We are told the mass of the ball is
, the height above the spring where the ball is dropped is
, the length the ball compresses the spring is
and the acceleration of gravity is
.
We will consider the initial moment to be when the ball is dropped and the final moment to be when the ball stops, compressing the spring. We supose that there is no friction so the initial mechanical energy
is equal to the final mechanical energy
:

Initially there is only gravitational potential energy because the force of the spring isn't present and the speed is zero. In the final moment there is only elastic potential energy because the height is zero and the ball has stopped. So we have that:

If we manipulate the equation we have that:




Answer:
1.53 seconds
Explanation:
Applying,
T = 2usin∅/g................ Equation 1
Where, T = time of flight, u = initial velocity, ∅ = angle of projectile to the horizontal, g = acceleration due to gravity
From the question,
Given: u = 15 m/s, ∅ = 30°
Constant: g = 9.8 m/s²
Substitute these values in equation 1
T = 2(15)(sin30°)/9.8
T = 15/9.8
T = 1.53 seconds
Hence the time rate of flight is 1.53 seconds