The correct answer for the question that is being presented above is this one: "Schmidt-Cassegrain focus." A focal arrangement that has a thin lens that the light passes through before traveling down the tube to the objective mirror is a Schmidt-Cassegrain focus.
Here are the following choices:
a. Cassegrain focus
b. Newtonian focus
c. Schmidt-Cassegrain focus
<span>d. Schmidt focus</span>
Answer: apparent weighlessness.
Explanation:
1) Balance of forces on a person falling:
i) To answer this question we will deal with the assumption of non-drag force (abscence of air).
ii) When a person is dropped, and there is not air resistance, the only force acting on the person's body is the Earth's gravitational attraction (downward), which is the responsible for the gravitational acceleration (around 9.8 m/s²).
iii) Under that sceneraio, there is not normal force acting on the person (the normal force is the force that the floor or a chair exerts on a body to balance the gravitational force when the body is on it).
2) This is, the person does not feel a pressure upward, which is he/she does not feel the weight: freefalling is a situation of apparent weigthlessness.
3) True weightlessness is when the object is in a place where there exists not grativational acceleration: for example a point between two planes where the grativational forces are equal in magnitude but opposing in direction and so they cancel each other.
Therefore, you conclude that, assuming no air resistance, a person in this ride experiencing apparent weightlessness.
Answer:
1.84 hours or 110.4 minutes
Explanation:
8 miles 1.61 km 1 hr
------------ x ----------------- x -------------- = 1.84 hours or 110.4 minutes
1 mile 7 km
Use the eq. of Young modulus Y=(F/A)/(∆l/lo)
dimana ∆l is the elongation of wire, lo is its initial length.
So ∆l = (F/A)lo/Y.
∆l = (1000N/(6.5 × 10^-7 m^2))×(2.5m)/(2.0 × 10^-11 N/m^2)
Use calculator to finish it.
a) uniform velocity
b) zero or no acceleration
c) (see picture)
EXPLANATION:
(see picture)