The centripetal force on the car as it goes around the second curve is twice that compared to the first.
What is Centripetal force?
It is the force that is necessary to keep an object moving in a curved path and that is directed inward toward the center of rotation.
The formula of Centripetal force is:
F(c) = (m* v^2) / r
Here,
At the first curve,
The curve of radius = r
The constant speed = v
At the second curve,
The car speed (v')= 2 v
The radius of the curve (r')=2 r
According to the formula of centripetal Force:
As the car goes around the second curve,
F'(c) = m*v'^2 / r'
F'(c) = m* (2*v)^2 / 2r
F'(c) = 2* F
Thus,
The centripetal force on the car as it goes around the second curve is twice that compared to the first.
Learn more about centripetal force here:
<u>brainly.com/question/14317060</u>
#SPJ4
Answer: Pressure increases as the depth increases
Explanation: The pressure in a liquid is due to the weight of the column of water above. Since the particles in a liquid are tightly packed, this pressure acts in all directions.
The statement that is true is that positively charged objects attract negatively charged objects. This is due to a law that states 'like forces attract while unlike forces repel. This same concept applies to magnetism. If you put two similar poles together, for example; if you place two south poles together. You feel a separating force between the two poles. But if you place two opposite poles together they attract each other. Hope i helped. <span />
Answer:
140°
Explanation:
The law of reflection states that the angle of redlection equals to the angle of incidence.
When light rays hit surface at 20°, they also leave the surface at the same angle
Since the whole surface has 180° then subtracting these two angles from total angle gives the the angle between the incident and reflected rays.
180°-20°-20°=140°
The angle of incidence and reflection are equal hence 140/2=70°
The question needed the angle between the incident and reflected rays which is already calculated as 140°