How do you calculate distance over speed?
Image result for if your going 30 m/s to go somewhere thats 1680 miles away
The formula can be rearranged in three ways:
speed = distance ÷ time.
distance = speed × time.
time = distance ÷ speed.
1680÷30 = 56
So it would take around 56 minutes to get to Kroger.
I hope this helps !! :)
Answer:
Hi sorry for answering here but you didnt put the options there
Explanation:
I'll still try to answer though so maybe the mixture from one of the questions might be something like oil and water which don't mix and can be separated by decantation so something similar would work. Hope this helps
Wow ! This will take more than one step, and we'll need to be careful
not to trip over our shoe laces while we're stepping through the problem.
The centripetal acceleration of any object moving in a circle is
(speed-squared) / (radius of the circle) .
Notice that we won't need to use the mass of the train.
We know the radius of the track. We don't know the trains speed yet,
but we do have enough information to figure it out. That's what we
need to do first.
Speed = (distance traveled) / (time to travel the distance).
Distance = 10 laps of the track. Well how far is that ? ? ?
1 lap = circumference of the track = (2π) x (radius) = 2.4π meters
10 laps = 24π meters.
Time = 1 minute 20 seconds = 80 seconds
The trains speed is (distance) / (time)
= (24π meters) / (80 seconds)
= 0.3 π meters/second .
NOW ... finally, we're ready to find the centripetal acceleration.
<span> (speed)² / (radius)
= (0.3π m/s)² / (1.2 meters)
= (0.09π m²/s²) / (1.2 meters)
= (0.09π / 1.2) m/s²
= 0.236 m/s² . (rounded)
If there's another part of the problem that wants you to find
the centripetal FORCE ...
Well, Force = (mass) · (acceleration) .
We know the mass, and we ( I ) just figured out the acceleration,
so you'll have no trouble calculating the centripetal force. </span>
Imagine you are in a swimming pool 30m deep. Assuming you know that water is denser than air, you would know that the 30m of water above you will carry more weight, and press down on your body. Say you were in a swimming pool 60m deep, you would be sandwiched between 30m of water pressing down on you, and the upthrust created by the 30m of water below you.
In a building 30m up, the pressure will be regulated, as you are in a building. The floor will be strong enough to support the weight of the body, and the body will not recoil into itself.
Answer:
Explanation:
This is case of interference in thin films
for constructive interference in thin film the condition is
2μ t = (2n+1)λ/2 ; μ is refractive index of oil , t is thickness of oil , λ is wave length of light .
2 x 1.28 x t = λ/2 , if n = 0
2 x 1.28 x t = 605 /2
t = 118.16 nm .
the minimum non-zero thickness of the oil film required = 118.16 nm.