Thank you for posting your question here at brainly. Below is the solution:
<span>moles HClO4 = 0.100 L x 0.18 M = 0.018
moles LiOH = 0.030 L x 0.27 = 0.0081
moles H+ in excess = 0.018 - 0.0081 = 0.0099
total volume = 0.130 L
[H+] = 0.0099/ 0.130= 0.0762 M
pH = 1.12</span>
Answer: -Ionic bonds form when one atom provides electrons to another atom. Covalent Bonds: Covalent bonds form when two atom shares their valence electrons. Metallic Bonds: Metallic bonds form when a variable number of atoms share a variable number of electrons in a metal lattice.
-Covalent Bonds.
Covalent Compounds. Contain no metals and no ions. Covalent compounds contain nonmetals only.
Example:
Ionic Compounds. A metal with a non-metal. Doesn't use prefixes for naming. Name the metal and change the nonmetal ending to -ide.
Explanation: Ionic bonds form when a nonmetal and a metal exchange electrons, while covalent bonds form when electrons are shared between two nonmetals. An ionic bond is a type of chemical bond formed through an electrostatic attraction between two oppositely charged ions.
Answer: C2H2
Explanation: Because each of the lines represent one bond, and because there are three lines (bonds) between the carbons, it means that they are bonded by three bonds, also known as a triple bond.
The answer is A to B because the distance is rising rapidly as seen by the steep slope segment A to B had
Answer: balanced chemical equation: 
Net ionic equation :
Explanation:
A double displacement reaction is one in which exchange of ions take place. The salts which are soluble in water are designated by symbol (aq) and those which are insoluble in water and remain in solid form are represented by (s) after their chemical formulas.
The balanced chemical equation is:

Spectator ions are defined as the ions which does not get involved in a chemical equation or they are ions which are found on both the sides of the chemical reaction present in ionic form.
The ions which are present on both the sides of the equation are sodium and nitrate ions and hence are not involved in net ionic equation.
Hence, the net ionic equation is