If the faucet drops at 5 mL per minute you just have to do the following steps to find out.
5 mL for the dripping rate times 5 for the minutes.
The answer would result being 25mL
Hope this helps! Stay safe!
Answer:
Kc = 1.09x10⁻⁴
Explanation:
<em>HF = 1.62g</em>
<em>H₂O = 516g</em>
<em>F⁻ = 0.163g</em>
<em>H₃O⁺ = 0.110g</em>
<em />
To solve this question we need to find the moles of each reactant in order to solve the molar concentration of each reactan and replacing in the Kc expression. For the reaction, the Kc is:
Kc = [H₃O⁺] [F⁻] / [HF]
<em>Because Kc is defined as the ratio between concentrations of products over reactants powered to its reaction coefficient. Pure liquids as water are not taken into account in Kc expression:</em>
<em />
[H₃O⁺] = 0.110g * (1mol /19.01g) = 0.00579moles / 5.6L = 1.03x10⁻³M
[F⁻] = 0.163g * (1mol /19.0g) = 0.00858moles / 5.6L = 1.53x10⁻³M
[HF] = 1.62g * (1mol /20g) = 0.081moles / 5.6L = 0.0145M
Kc = [1.03x10⁻³M] [1.53x10⁻³M] / [0.0145M]
<h3>Kc = 1.09x10⁻⁴</h3>
Answer : The mass of sulfuric acid needed is
.
Solution : Given,
pH = 8.94
Volume of solution = 380 ml =

Molar mass of sulfuric acid = 98.079 g/mole
As we know,

![pOH=-log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-log%5BOH%5E-%5D)
![5.06=-log[OH^-]](https://tex.z-dn.net/?f=5.06%3D-log%5BOH%5E-%5D)
![[OH^-]=0.00000871=8.71\times 10^{-6}mole/L](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D0.00000871%3D8.71%5Ctimes%2010%5E%7B-6%7Dmole%2FL)
Now we have to calculate the moles of
.
Formula used : 
![\text{ Moles of }[OH^-]=\text{ Concentration of }[OH^-]\times Volume\\\text{ Moles of }[OH^-]=(8.71\times 10^{-6}mole/L)\times (380\times 10^{-3}L)=3309.8\times 10^{-9}moles](https://tex.z-dn.net/?f=%5Ctext%7B%20Moles%20of%20%7D%5BOH%5E-%5D%3D%5Ctext%7B%20Concentration%20of%20%7D%5BOH%5E-%5D%5Ctimes%20Volume%5C%5C%5Ctext%7B%20Moles%20of%20%7D%5BOH%5E-%5D%3D%288.71%5Ctimes%2010%5E%7B-6%7Dmole%2FL%29%5Ctimes%20%28380%5Ctimes%2010%5E%7B-3%7DL%29%3D3309.8%5Ctimes%2010%5E%7B-9%7Dmoles)
For neutralization, equal number of moles of
ions will neutralize same number of
ions.
![\text{ Moles of }[OH^-]=\text{ Moles of }[H^+]=3309.8\times 10^{-9}moles](https://tex.z-dn.net/?f=%5Ctext%7B%20Moles%20of%20%7D%5BOH%5E-%5D%3D%5Ctext%7B%20Moles%20of%20%7D%5BH%5E%2B%5D%3D3309.8%5Ctimes%2010%5E%7B-9%7Dmoles)
As, 
From this reaction, we conclude that
2 moles of
ion is given by the 1 mole of 
moles of
ion is given by
moles of 
Now we have to calculate the mass of sulfuric acid.
Mass of sulfuric acid = Moles of
× Molar mass of sulfuric acid
Mass of sulfuric acid = 
Therefore, the mass of sulfuric acid needed is
.
Answer:
- C₃H₈ (g) + 5O₂(g) → 3CO₂ (g) + 4H₂O (l)
(option D. with the proviso that the subscripts of propane's chemical formula must be corrected)
Explanation:
<em>Propane</em> is the saturated hydrocarbon, alkane, with chemical formula C₃H₈ or CH₃CH₂CH₃.
The complete combustion of the hydrocarbons yield carbon dioxide (CO₂) and water (H₂O).
The chemical equation that represents this combustion is:
- C₃H₈ (g) + O₂(g) → CO₂ (g) + H₂O (l) (skeleton equation: unbalanced)
Once you balance it, you get:
- C₃H₈ (g) + 5O₂(g) → 3CO₂ (g) + 4H₂O (l)
Left side Right side
C 3 3
H 8 4×2 = 8
O 5×2 = 10 3×2 + 4 = 10
That equation corresponds to the option D. of the list, with the proviso that the subscripts of propane's chemical formula must be corrected
AnswerLewis symbols are diagrams that show the number of valence electrons of a particular ... of the elements with their number of valence electrons represented as dots ... Only the electrons in the valence level are shown using this notation.:
yaaa
Explanation: