The number of moles of the magnesium (mg) is 0.00067 mol.
The number of moles of hydrogen gas is 0.0008 mol.
The volume of 1 more hydrogen gas (mL) at STP is 22.4 L.
<h3>
Number of moles of the magnesium (mg)</h3>
The number of moles of the magnesium (mg) is calculated as follows;
number of moles = reacting mass / molar mass
molar mass of magnesium (mg) = 24 g/mol
number of moles = 0.016 g / 24 g/mol = 0.00067 mol.
<h3>Number of moles of hydrogen gas</h3>
PV = nRT
n = PV/RT
Apply Boyle's law to determine the change in volume.
P1V1 = P2V2
V2 = (P1V1)/P2
V2 = (101.39 x 146)/(116.54)
V2 = 127.02 mL
Now determine the number of moles using the following value of ideal constant.
R = 8.314 LkPa/mol.K
n = (15.15 kPa x 0.127 L)/(8.314 x 290.95)
n = 0.0008
<h3>Volume of 1 mole of hydrogen gas at STP</h3>
V = nRT/P
V = (1 x 8.314 x 273) / (101.325)
V = 22.4 L
Learn more about number of moles here: brainly.com/question/13314627
#SPJ1
Answer:
B)Continents look like they fit together
Answer:
0.01395mol Cr2O3
Explanation:
the molar mass of Cr2O3 is 151.9904 g/mol
2.12g Cr2O3 x 1 mol/151.9904g = 0.01395mol Cr2O3
The chemical described above belongs to CLASS 1 EXPLOSIVES of DOT hazardous material classification. An hazardous substance is any substance which can cause adverse effects in humans when exposed to it. These substances are divided into different categories based on the way they react in different situations. It is mandatory that you aware of the kind of chemical you are working with when you are in the laboratory in order to take appropriate precautionary steps.
Answer:
By contracting, muscles pull on bones and allow the body to move. ... For example, the biceps and triceps muscles work together to allow you to bend and straighten your elbow. When you want to bend your elbow, your biceps muscle contracts (Figure below), and, at the same time, the triceps muscle relaxes.
Explanation: